관리 메뉴


수악중독

기하와 벡터_평면의 방정식_평면과 평면이 이루는 각_난이도 상 본문

(9차) 기하와 벡터 문제 풀이/벡터

기하와 벡터_평면의 방정식_평면과 평면이 이루는 각_난이도 상

수악중독 2013. 4. 21. 08:43

좌표공간에서 구 \(x^2 +y^2 +z^2 =50\) 이 두 평면 \[\alpha \;: \; x+y+2z=15\]

\[\beta \; : \; x-y-4 \sqrt{3} z=25 \] 와 만나서 생기는 원을 각각 \(C_1 ,\; C_2\) 라 하자. 원 \(C_1\) 위의 점 \(\rm P\) 와 원 \(C_2\) 위의 점 \(\rm Q\) 에 대하여 \(\overline{{\rm PQ}} ^2\) 의 최솟값을 구하시오.

 

Comments