관리 메뉴


수악중독

기하와 벡터_공간도형 및 공간좌표_난이도 중 본문

(9차) 기하와 벡터 문제 풀이/공간도형 및 공간좌표

기하와 벡터_공간도형 및 공간좌표_난이도 중

수악중독 2011. 11. 4. 11:05
아래 그림과 같이 평면 \(\alpha\) 위에 \(\overline {\rm OA} = 2,\; \overline {\rm OC} = \sqrt{3},\; \overline {\rm OD} = 1 \) 인 직육면체 \(\rm OABC-DEFG\) 가 있다. 모서리 \(\overline {\rm BC}\) 위의 한 점 \(\rm A'\) 은 \(\overline {\rm BA'} =1 \) 인 점이고, 꼭짓점 \(\rm D\) 에서 선분 \(\overline {\rm AA'}\) 에 내린 수선의 발을 \(\rm H\) 라 하자. 선분 \(\overline {\rm OD}\) 를 회전축으로 하여 직육면체 \(\rm OABC-DEFG\) 를 \(360^o\) 회전시킬 때, 선분 \(\overline {\rm AA'}\) 이 평면 \(\alpha\) 위에서 그리는 자취의 넓이를 \(S\) 라고 할 때, \( \Large \frac{S}{\pi}\) 의 값을 구하시오.



 

 
Comments