일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 수악중독
- 수학1
- 미분
- 여러 가지 수열
- 적분과 통계
- 기하와 벡터
- 적분
- 미적분과 통계기본
- 함수의 그래프와 미분
- 심화미적
- 정적분
- 로그함수의 그래프
- 수열의 극한
- 수열
- 도형과 무한등비급수
- 이차곡선
- 수학질문답변
- 함수의 극한
- 접선의 방정식
- 확률
- 중복조합
- 수능저격
- 이정근
- 수학2
- 함수의 연속
- 수학질문
- 행렬
- 경우의 수
- 행렬과 그래프
- 수만휘 교과서
- Today
- Total
목록합성함수 (11)
수악중독
집합 $X=\{1, \; 2, \; 3, \; 4, \; 5, \; 6, \; 7, \; 8, \; 9\}$ 에 대하여 두 함수 $f\; : \; X \rightarrow X, \;\; g\; : \; X \rightarrow X$ 가 다음 조건을 만족시킨다. (가) $f(1)=8, \;\; f(3) \ne 6$(나) 함수 $(g \circ f)(x)$ 는 항등함수이다.(다) 집합 $X$ 의 모든 원소 $x$ 에 대하여 $f(x)+g(x)$ 의 값은 일정하다. $(f \circ f \circ f)(7)$ 의 값은? ① $3$ ② $4$ ③ $5$ ④ $6$ ⑤ $7$ 정답 ②
그림과 같이 닫힌 구간 $[0, \; 4]$ 에서 정의된 함수 $f(x)$ 의 그래프는 점 $(0, \; 0)$, $(1, \; 4)$, $(2, \; 1)$, $(3, \; 4)$, $(4, \; 3)$ 을 이 순서대로 선분으로 연결한 것과 같다. 다음 조건을 만족시키는 집합 $X=\{a, \; b\}$ 의 개수는? (단, $0\le a < b \le 4$) $ X$ 에서 $X$ 로의 함수 $g(x)=f(f(x))$ 가 존재하고 $g(a)=f(a)$, $g(b)=f(b)$ 를 만족시킨다. ① $11$ ② $13$ ③ $15$ ④ $17$ ⑤ $19$ 정답 ②
실수 $a, \; b, \; c$ 와 두 함수 $$ \begin{aligned} f(x) &= \left \{ \begin{array}{ll} x+a & (x
집합 $X=\{1, \; 2, \; 3, \;4, \; 5\}$ 에 대하여 $X$ 에서 $X$ 로의 일대일 대응인 함수 $f$ 가 다음 조건을 만족시킨다. (가) $f\circ f = I$(나) 집합 $X$ 의 어떤 원소 $x$ 에 대하여 $f(x)=2x$ 이다. 에서 옳은 것만을 있는 대로 고른 것은? (단, $I$ 는 항등함수이다.) ㄱ. $f(1)=f^{-1}(1)$ㄴ. $f(1)=5$ 이면 $f(3)=3$ 이다.ㄷ. 함수 $f$ 의 개수는 $8$ 이다. ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄱ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤
실수 $k$ 에 대하여 함수 $f(x)=x^3-3x^2+6x+k$ 의 역함수를 $g(x)$ 라 하자. 방정식 $4f'(x)+12x-18=(f' \circ g)(x)$ 가 닫힌 구간 $[0, \;1]$ 에서 실근을 갖기 위한 $k$ 의 최솟값을 $m$, 최댓값을 $M$ 이라 할 때, $m^2 + M^2$ 의 값을 구하시오. 정답 $65$
집합 $X=\{1, \;2, \;3, \;4\}$ 에 대하여 $X$ 에서 $X$ 로의 일대일 대응인 함수 $f$ 가 다음 조건을 만족시킨다. (가) 집합 $X$ 의 모든 원소 $x$ 에 대하여 $(f \circ f)(x)=x$ 이다.(나) 집합 $X$ 의 어떤 원소 $x$ 에 대하여 $f(x)=2x$ 이다. 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. $f(3)=f^{-1}(3)$ㄴ. $f(1)=3$ 이면 $f(2)=4$ 이다.ㄷ. 가능한 함수 $f$ 의 개수는 $4$ 이다. ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄱ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤
집합 $A=\{1, \;2, \;3, \;4, \;5\}$ 에 대하여 집합 $A$ 에서 집합 $A$ 로의 함수 $f(x), \; g(x)$ 가 있다. 두 함수 $y=f(x), \; y=(f \circ g)(x)$ 의 그래프가 각각 그림과 같을 때, $g(2)+(g \circ f)^{-1}(1)$의 값은?① $6$ ② $7$ ③ $8$ ④ $9$ ⑤ $10$ 정답 ⑤
합성함수 역함수 역함수의 성질 합성함수와 역함수 심화개념 $y=f(x)$ 와 $y=f^{-1}(x)$ 그래프의 교점 이전 다음
두 함수 $$ f\left( x \right) = \left\{ {\begin{array}{ll}{{x^2} + 2ax + 6}&{\left( {x < 0} \right)}\\{x + 6}&{\left( {x \ge 0} \right)}\end{array},\;\;g\left( x \right) = x + 10} \right.$$ 에 대하여 합성합수 $(g \circ f)(x)$ 의 치역이 $\{y\;|\;y \ge 0\} $ 일 때, 상수 $ a$ 의 값을 구하시오. 정답 $4$