일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 함수의 연속
- 적분과 통계
- 여러 가지 수열
- 함수의 극한
- 수열
- 수학질문
- 정적분
- 이정근
- 행렬
- 중복조합
- 심화미적
- 수만휘 교과서
- 수학1
- 수열의 극한
- 행렬과 그래프
- 함수의 그래프와 미분
- 적분
- 이차곡선
- 도형과 무한등비급수
- 확률
- 경우의 수
- 수학질문답변
- 기하와 벡터
- 미적분과 통계기본
- 수능저격
- 미분
- 접선의 방정식
- 수악중독
- 수학2
- 로그함수의 그래프
- Today
- Total
목록타원의 정의 (8)
수악중독
그림과 같이 타원 $\dfrac{x^2}{36} + \dfrac{y^2}{27}=1$ 의 두 초점이 $\rm F, \; F'$ 이고, 제1사분면에 있는 두 점 $\rm P, \;Q$ 는 다음 조건을 만족시킨다. (가) $\overline{\rm PF}=2$(나) 점 $\rm Q$ 는 직선 $\rm PF'$ 과 타원의 교점이다. 삼각형 $ \rm PFQ $ 의 둘레의 길이과 삼각형 $\rm PF'F$ 의 둘레의 길이의 합을 구하시오. 정답 $22$
그림과 같이 두 점 $\rm F, \; F'$ 을 초점으로 하는 타원 $\dfrac{x^2}{49} + \dfrac{y^2}{33}=1$ 위를 움직이는 점 $\rm P$ 가 있다. $\rm \angle FPF'$ 의 이등분선과 $x$ 축의 교점 $\rm Q$ 의 좌표가 $(1, \; 0)$ 일 때, $\left | \overline{\rm PF} - \overline{\rm PF'} \right | = \dfrac{q}{p}$ 이다. $p+q$ 의 값을 구하시오. (단, $p$ 와 $q$ 는 서로소인 자연수이다.) 정답 $9$
그림과 같이 두 초점 \(\rm F, \;F'\) 이 \(x\) 축 위에 있는 타원 \( \dfrac{x^2}{49}+\dfrac{y^2}{a}=1\) 위의 점 \(\rm P\) 가 \(\overline{\rm FP}=9\) 를 만족시킨다. 점 \(\rm F\) 에서 선분 \(\rm PF'\) 에 내린 수선의 발 \(\rm H\) 에 대하여 \(\overline{\rm FH}=6\sqrt{2}\) 일 때, 상수 \(a\) 의 값은? ① \(29\) ② \(30\) ③ \(31\) ④ \(32\) ⑤ \(33\) 정답 ②
타원 \(E:\dfrac{x^2}{36}+\dfrac{y^2}{10}=1\) 의 두 초점을 \(\rm F, \;F'\) 이라 하자. 타원 \(E\) 위의 점 \(\rm P\) 에 대하여 그림과 같이 선분 \(\rm F'P\) 의 연장선 위에 \(\overline{\rm PF}=\overline{\rm PQ}\) 인 점 \(\rm Q\) 를 타원의 외부에 정하고, 선분 \(\rm FQ\) 의 중점을 \(\rm R\) 라 하자. 점 \(\rm P\) 가 타원 \(E\) 위의 모든 점을 지날 때, 점 \(\rm R\) 가 나타내는 도형의 둘레의 길이는? ① \(6\pi\) ② \(9\pi\) ③ \(12\pi\) ④ \(15\pi\) ⑤ \(18\pi\) 정답 ⑤
좌표평면 위에 두 점 \({\rm F}_1(c, \;0), \; {\rm F'}(-c, \;0)\;(c>0)\) 을 초점으로 하는 타원이 있다. 이 타원의 장축의 양 끝점 중 \(\rm F_1\) 에 가까운 점을 \(\rm A\) 라 할 때, \(\overline{\rm AF_1}=1\) 이다. \(\rm F_1\) 을 지나고 기울기가 \(-3\) 인 직선이 티원과 제\(1\)사분면에서 만나는 점을 \(\rm P\) 라 할 때, 직선 \(\rm PF_2\) 의 기울기는 \(\dfrac{3}{4}\) 이다. \(\overline{\rm PF_1}\times \overline{\rm PF_2}\) 의 값은? ① \(2\sqrt{10}\) ② \(4\sqrt{3}\) ③ \(2\sqrt{14}\) ④ \(8\..
좌표평면에서 점 \(\rm A(1,\;0)\) 과 포물선 \(y^2=4x\) 위의 한 점 \(\rm B\) 에 대하여 선분 \(\rm AB\) 와 타원 \(\dfrac{x^2}{4}+\dfrac{y^2}{3}=1\) 의 교점을 \(\rm C\) 라 하자. \(\overline{\rm AB}=5\) 일 때, 삼각형 \(\rm OAC\) 의 넓이는? (단, \(\rm O\) 는 원점이고, 점 \(\rm B\) 는 제\(1\)사분면 위의 점이다.) ① \(\dfrac{3}{26}\) ② \(\dfrac{3}{13}\) ③ \(\dfrac{9}{26}\) ④ \(\dfrac{6}{13}\) ⑤ \(\dfrac{26}{13}\) 정답
그림과 같이 점 \({\rm A}(-5, \;0)\) 을 중심으로 하고 반지름의 길이가 \(r\) 인 원과 타원 \(\dfrac{x^2}{25}+\dfrac{y^2}{16}=1\) 의 한 교점을 \(\rm P\) 라 하자. 점 \({\rm B}(3,\;0)\) 에 대하여 \(\overline{\rm PA}+\overline{\rm PB}=10\) 일 때, \(10r\) 의 값을 구하시오. 정답 \(26\)
아래 [그림1]은 옆면이 윗면과 밑면에 수직이고 속이 비어 있는 원기동을 밑면에 평행하지 않은 비스듬한 평면 \(\alpha\) 로 자른 상태를 나타낸 것이다. 이때, 평면 \(\alpha\) 와 원기둥의 옆면이 만나는 교선 \(e\) 의 모양은 타원이 된다. 이제 [그림2]와 같이 원기둥의 반지름과 반지름이 같은 반구 \(2\) 개를 원기둥의 위와 아래에서 반구의 평평한 면이 원기둥의 밑면에 평행인 상태가 유지되도록 하면서 두 반구가 각각 평면 \(\alpha\) 에 접할 때까지 밀어 넣는다. [그림2]에서 점 \(\rm P,\;Q\) 는 각각 교선 \(e\) 상의 점 중에서 가장 아래에 있는 점과 가장 위에 있는 점을 나타내고, 사각형 \(\rm ABCD\) 는 점 \(\rm P\) 와 \(\rm Q..