일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 이차곡선
- 로그함수의 그래프
- 수학2
- 미적분과 통계기본
- 행렬
- 함수의 연속
- 적분과 통계
- 기하와 벡터
- 확률
- 행렬과 그래프
- 적분
- 함수의 그래프와 미분
- 여러 가지 수열
- 심화미적
- 이정근
- 접선의 방정식
- 경우의 수
- 수능저격
- 중복조합
- 수악중독
- 수학질문
- 정적분
- 수학질문답변
- 수열의 극한
- 수학1
- 수열
- 도형과 무한등비급수
- 함수의 극한
- 수만휘 교과서
- 미분
- Today
- Total
목록수열의 합 (11)
수악중독
좌표평면에서 그림과 같이 길이가 $1$ 인 선분이 수직으로 만나도록 연결된 경로가 있다. 이 경로를 따라 원점에서 멀어지도록 움직이는 점 $\rm P$ 의 위치를 나타내는 점 ${\rm A}_n$ 을 다음과 같은 규칙으로 정한다. (i) ${\rm A}_0$ 은 원점이다.(ii) $n$ 이 자연수일 때, ${\rm A}_n$ 은 점 $ {\rm A}_{n-1}$ 에서 점 $\rm P$ 가 경로를 따라 $\dfrac{2n-1}{25}$ 만큼 이동한 위치에 있는 점이다. 예를 들어, 점 ${\rm A}_2$ 와 ${\rm A}_6$ 의 좌표는 각각 $\left ( \dfrac{4}{25}, \; 0 \right )$, $\left (1, \; \dfrac{11}{25} \right )$ 이다. 자연수 $n$..
사차함수 $f(x)$ 가 다음 조건을 만족한다. (가) $5$ 이하의 모든 자연수 $n$ 에 대하여 $\sum \limits_{k=1}^n f(k)=f(n)f(n+1)$ 이다.(나) $n=3, \; 4$ 일 때, $f(x)$ 에서 $x$ 의 값이 $n$ 에서 $n+2$ 까지 변할 때의 평균변화율은 양수가 아니다. $128 \times f \left ( \dfrac{5}{2} \right )$ 의 값을 구하시오. 정답 $65$
1. 수열의 합과 일반항과의 관계 - 개념정리&기본문제&대표유형17 2. 합의 기호 시그마 - 개념정리&기본문제 3. 합의 기호 시그마 - 대표유형01,02,03 4. 합의 기호 시그마 - 대표유형04 5. 자연수 거듭제곱의 합 - 개념정리 6. 자연수 거듭제곱의 합 - 기본문제 7. 자연수 거듭제곱의 합 - 대표유형05 8. 자연수 거듭제곱의 합 - 대표유형06,07,08 9. 소거되는 규칙이 있는 수열의 합 - 개념정리&기본문제 10. 소거되는 규칙이 있는 수열의 합 - 대표유형09,10 이전 다음
이차함수 $f(x)=\dfrac{3x-x^2}{2}$ 에 대하여 구간 $[0, \; \infty)$ 에서 정의된 함수 $g(x)$ 가 다음 조건을 만족한다. (가) $0 \le x
무리함수 $f(x)=\sqrt{\dfrac{x}{2}}$ 의 역함수를 $g(x)$ 라 할 때, 자연수 $n$ 에 대하여 $$g(n) \le x \le g(n+1), \; \; n \le y \le n+1$$ 가 나타내는 영역에 세로의 길이와 가로의 길이가 모두 자연수인 직사각형 여러 개를 다음 규칙에 따라 빈틈없이 나열한다. (가) 영역에 나열된 직사각형의 수는 4개이다.(나) 왼쪽에 나열된 직사각형의 길이는 그보다 오른쪽에 나열된 직사각형의 가로의 길이보다 크지 않다. 규칙에 따라 직사각형을 나열하는 방법의 수를 $a_n$, 가장 왼쪽에 반드시 정사각형을 배치하고 남은 영역에 규칙에 따라 직사각형을 나열하는 방법의 수를 $b_n$ 이라 할 때, $\sum \limits_{n=2}^6 a_n - \sum..
두 집합 $A=\{2l \;|\; l$ 은 자연수$\}$ , $B=\{2^m \; | \; m$ 은 자연수$\}$ 가 있다. 집합 $A$ 의 원소 $a$ 에 대하여 집합 $B$ 의 원소 중 $a$ 의 약수의 최댓값을 $M(a)$ 라 하자. 예를 들어, $M(2)=2, \; M(12)=4$ 이다. 수열 $\{a_n\}$ 을 $$a_n=\sum \limits_{k=1}^{2^{n-1}} M(2k)\;\; (n=1, \;2, \;3, \; \cdots )$$ 라 할 때, $\lim \limits_{n \to \infty} \dfrac{150a_n}{(3n+1)\times 2^n}$ 의 값을 구하시오. 정답 $25$
자연수 $n$ 에 대하여 집합 $S(n)$ 을 $$S(n)=\{ (x, \; y) \; | \; y-n \le x+6 \le 12, \; x, \; y는\; 자연수 \}$$라 할 때, 다음 조건을 만족시키는 정사각형의 개수를 $a_n$ 이라 하자. (가) 정사각형의 네 꼭짓점은 집합 $S(n)$ 의 원소이다. (나) 정사각형의 네 변은 좌표축과 각각 평행하다. $\sum \limits_{n=1}^6 a_n$ 의 값을 구하시오. 정답 $855$
좌표평면 위에 점 ${\rm P}_1(1, \; 0)$ 이 있다. 자연수 $n$ 에 대하여 점 ${\rm P}_n$의 좌표를 $(x_n, \; y_n)$이라 할 때, $x_n + y_n$ 을 $3$ 으로 나누었을 때의 나머지 $r_n$ 의 값에 따라 다음과 같이 점 ${\rm P}_{n+1}$ 을 정한다. (가) $r_n=1$ 이면 점 ${\rm P}_n$ 을 $x$ 축의 방향으로 $1$ 만큼 평행이동시킨 점을 ${\rm P}_{n+1}$ 이라 한다. (나) $r_n=2$ 이면 점 ${\rm P}_n$ 을 $x$ 축의 방향으로 $2$ 만큼, $y$ 축의 방향으로 $2$ 만큼 평행이동시킨 점을 ${\rm P}_{n+1}$ 이라 한다. (다) $r_n=0$ 이면 점 ${\rm P}_n$ 을 $x$ 축의 방향..
자연수 $n$ 에 대하여 $0$ 부터 $n$ 까지의 정수가 하나씩 적힌 $(n+1)$ 개의 공이 들어 있는 상자가 있다. 이 상자에서 한 개의 공을 꺼내어 공에 적힌 수를 확인하고 다시 넣는 과정을 $5$ 번 반복할 때, 확인한 $5$ 개의 수가 다음 조건을 만족시키는 경우의 수를 $a_n$ 이라 하자. (가) 꺼낸 공에 적힌 수는 먼저 꺼낸 공에 적힌 수보다 작지 않다.(나) 세 번째 꺼낸 공에 적힌 수는 첫 번째 꺼낸 공에 적힌 수보다 $1$ 이 더 크다. $\sum \limits_{n=1}^{18} \dfrac{a_n}{n+2}$ 의 값을 구하시오. 정답 $760$