일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 적분과 통계
- 여러 가지 수열
- 행렬
- 미적분과 통계기본
- 수능저격
- 이정근
- 수만휘 교과서
- 함수의 극한
- 수열
- 이차곡선
- 확률
- 로그함수의 그래프
- 기하와 벡터
- 도형과 무한등비급수
- 수학질문
- 정적분
- 미분
- 심화미적
- 수악중독
- 함수의 그래프와 미분
- 수학2
- 행렬과 그래프
- 접선의 방정식
- 수학1
- 중복조합
- 수열의 극한
- 수학질문답변
- 적분
- 경우의 수
- 함수의 연속
- Today
- Total
목록도함수 (3)
수악중독
평균변화율과 순간변화율 미분계수 도함수 곱의 미분법 $ r(x)=f(x)g(x)$일 때, $$r'(x) = f'(x)g(x) + f(x)g'(x)$$ 먼저 도함수의 정의를 이용하여 \(r'(x)\) 를 표현해 보자.$$r'(x) = \lim \limits_{h \to 0} \dfrac{r(x+h)-r(x)}{h}$$이제 $r(x)$ 를 모두 $f(x)g(x)$로 바꾸고 식을 약간 변형해 보자. $$\begin{aligned} r'(x) &= \lim \limits_{h \to 0} \dfrac{f(x+h)g(x+h)-f(x)g(x)}{h} \\ &= \lim \limits_{h \to 0} \dfrac{f(x+h)g(x+h)-g(x+h)f(x) + g(x+h)f(x) - f(x)g(x)}{h} \\ &=..
실수 $k$ 에 대하여 함수 $f(x)=x^3-3x^2+6x+k$ 의 역함수를 $g(x)$ 라 하자. 방정식 $4f'(x)+12x-18=(f' \circ g)(x)$ 가 닫힌 구간 $[0, \;1]$ 에서 실근을 갖기 위한 $k$ 의 최솟값을 $m$, 최댓값을 $M$ 이라 할 때, $m^2 + M^2$ 의 값을 구하시오. 정답 $65$
다항함수 \(y=f(x)\) 의 도함수 \(f'(x)\) 로부터 얻을 수 있는 무한급수 \(\sum \limits_{n=1}^{\infty} \dfrac{1}{f'(n)}\) 에 대하여, 에서 항상 옳은 것을 모두 고른 것은? (단, 모든 자연수 \(n\) 에 대하여 \(f'(n) \ne 0\) 이다.) ㄱ. \(f(x)=2x^3 +3x^2 +1\) 이면 \(\sum \limits_{n=1}^{\infty} \dfrac{1}{f'(n)} = \dfrac{1}{6}\) 이다. ㄴ. \(\lim \limits_{x \to \infty} f(x)=\infty\) 이면 \( \sum \limits_{n=1}^{\infty} \dfrac{1}{f'(n)}\) 은 수렴한다. ㄷ. \(\sum \limits_{n=1..