일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 행렬
- 심화미적
- 중복조합
- 이정근
- 수열의 극한
- 행렬과 그래프
- 적분과 통계
- 여러 가지 수열
- 수만휘 교과서
- 함수의 연속
- 이차곡선
- 함수의 극한
- 함수의 그래프와 미분
- 수학질문답변
- 미적분과 통계기본
- 경우의 수
- 미분
- 확률
- 수열
- 로그함수의 그래프
- 수학1
- 수능저격
- 도형과 무한등비급수
- 접선의 방정식
- 수악중독
- 기하와 벡터
- 정적분
- 적분
- 수학질문
- 수학2
- Today
- Total
목록곱의 미분 (3)
수악중독
미분가능한 함수 $f(x)$ 가 다음의 등식을 만족시킬 때, $f(1)$ 의 값을 구하시오.$$\displaystyle \int_0^x f(t) \; dt = x^3 - 3x^2 +x + \int_0^x tf(x-t)dt, \;\; f(0)=1$$ 정답 $e-6$
그림과 같이 원점 \(\rm O\) 를 중심으로 하고 반지름의 길이가 \(10\) 인 원이 있다. 직선 \(y= \sqrt{3} x\) 와 원이 제1사분면에서 만나는 점을 \(\rm A\) 라 하자. 점 \(\rm P\) 는 원점 \(\rm O\) 를 출발하여 \(x\) 축을 따라 양의 방향으로 매초 \(2\) 의 일정한 속력으로 움직인다. 점 \(\rm P\) 가 원점 \(\rm O\) 를 출발하여 \(t\) 초가 되는 순간, 점 \(\rm P\) 를 지나고 직선 \(y=\sqrt{3}x\) 에 평행한 직선이 제1사분면에서 원과 만나는 점을 \(\rm Q\) 라 하자. 세 선분 \(\rm AO, \; OP, \; PQ\) 와 호 \(\rm QA\) 로 둘러싸인 부분의 넓이를 \(S\)라 할 때, 점 \..
삼차함수 \(y=f(x)\) 의 그래프가 그림과 같다. \(f(x)\) 는 \(x=\alpha\) 에서 극댓값을 갖고, \(\displaystyle \int _0^a \left | f(x) \right | dx = \displaystyle \int _a^b \left | f(x) \right | dx\) 를 만족한다. \[F(x)=x \displaystyle \int _0^x f(t) dt\] 라고 할 때, 옳은 것만을 보기에서 있는 대로 고른 것은? ㄱ. \(0