그림과 같이 길이가 $2$ 인 선분 $\rm AB$ 를 지름으로 하는 반원이 있다. 호 $\rm AB$ 위의 점 $\rm P$ 와 선분 $\rm AB$ 위의 점 $\rm C$ 에 대하여 $\rm \angle PAC = \theta$ 일 때, $\rm \angle APC = 2 \theta$ 이다. $\rm \angle ADC = \angle PCD = \dfrac{\pi}{2}$ 인 점 $\rm D$ 에 대하여 두 선분 $\rm AP$ 와 $\rm CD$ 가 만나는 점을 $\rm E$ 라 하자. 삼각형 $\rm DEP$ 의 넓이를 $S(\theta)$ 라 할 때, $\lim \limits_{\theta \to 0+} \dfrac{S(\theta)}{\theta}$ 의 값은 (단, $0 < \theta < \dfrac{\pi}{6}$)
① $\dfrac{5}{9}$ ②$\dfrac{2}{3}$ ③$\dfrac{7}{9}$ ④$\dfrac{8}{9}$ ⑤$1$