관리 메뉴


수악중독

(이과) 치환적분_난이도 상 본문

(9차) 미적분 II 문제풀이/적분

(이과) 치환적분_난이도 상

수악중독 2017. 6. 12. 23:19

구간 $[1, \; 2]$ 에서 연속이고 구간 $(1, \;2)$ 에서 미분가능한 함수 $f(x)$ 에 대하여 직선 $y=x-t\; \; (0 \le t \le 2)$ 와 곡선 $y=f(x)$ 가 오직 한 점에서 만날 때, 그 점의 $x$ 좌표를 $g(t)$ 라고 하자. 함수 $g(t)$ 가 다음 조건을 만족시킬 때, $\displaystyle \int_1^2 f(x) \; dx = \dfrac{q}{p}$ 이다. $p+q$ 의 값을 구하시오. (단, $p$ 와 $q$ 는 서로소인 자연수이다.)


(가) $g(t)$ 는 구간 $[0, \; 2]$ 에서 연속이면서 증가하고 $g(0)=1, \; g(2)=2$ 이다.

(나) $\displaystyle \int_0^2 g(t) \; dt = \dfrac{19}{6}$



Comments