일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 수악중독
- 경우의 수
- 함수의 연속
- 수학질문
- 확률
- 함수의 극한
- 수학2
- 수만휘 교과서
- 이차곡선
- 심화미적
- 미적분과 통계기본
- 중복조합
- 수열
- 접선의 방정식
- 함수의 그래프와 미분
- 도형과 무한등비급수
- 미분
- 행렬
- 수능저격
- 적분
- 수열의 극한
- 수학질문답변
- 정적분
- 수학1
- 적분과 통계
- 이정근
- 기하와 벡터
- 행렬과 그래프
- 여러 가지 수열
- 로그함수의 그래프
- Today
- Total
목록항등함수 (4)
수악중독
1. 함수 2. 서로 같은 함수 3. 함수의 그래프 4. 여러 가지 함수 5. 합성함수 6. 합성함수의 성질 7. 역함수 8. 역함수의 성질 9. 역함수의 그래프 10. 유리식의 계산 11. 부분분수와 번분수식 12. 유리함수와 유리함수의 그래프 13. 여러 가지 유리함수의 그래프 14. $y=\dfrac{ax+b}{cx+d}$ 의 역함수 15. 무리식과 분모의 유리화 16. 무리함수와 무리함수의 그래프 17. 여러 가지 무리함수의 그래프 (보너스) 선대칭 도형과 점대칭 도형 이전 다음
집합 $X=\{1, \; 2, \; 3, \; 4, \; 5, \; 6, \; 7, \; 8, \; 9\}$ 에 대하여 두 함수 $f\; : \; X \rightarrow X, \;\; g\; : \; X \rightarrow X$ 가 다음 조건을 만족시킨다. (가) $f(1)=8, \;\; f(3) \ne 6$(나) 함수 $(g \circ f)(x)$ 는 항등함수이다.(다) 집합 $X$ 의 모든 원소 $x$ 에 대하여 $f(x)+g(x)$ 의 값은 일정하다. $(f \circ f \circ f)(7)$ 의 값은? ① $3$ ② $4$ ③ $5$ ④ $6$ ⑤ $7$ 정답 ②
집합 $X=\{1, \; 2, \; 3, \;4, \; 5\}$ 에 대하여 $X$ 에서 $X$ 로의 일대일 대응인 함수 $f$ 가 다음 조건을 만족시킨다. (가) $f\circ f = I$(나) 집합 $X$ 의 어떤 원소 $x$ 에 대하여 $f(x)=2x$ 이다. 에서 옳은 것만을 있는 대로 고른 것은? (단, $I$ 는 항등함수이다.) ㄱ. $f(1)=f^{-1}(1)$ㄴ. $f(1)=5$ 이면 $f(3)=3$ 이다.ㄷ. 함수 $f$ 의 개수는 $8$ 이다. ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄱ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤
함수 기초 여러 가지 함수 관련 예제 함수_일대일 대응_난이도 상 이전 다음