일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 기하와 벡터
- 수열의 극한
- 접선의 방정식
- 이차곡선
- 함수의 그래프와 미분
- 수학1
- 수악중독
- 확률
- 정적분
- 적분과 통계
- 미분
- 수학질문
- 함수의 연속
- 수능저격
- 심화미적
- 경우의 수
- 도형과 무한등비급수
- 수학2
- 이정근
- 행렬과 그래프
- 수만휘 교과서
- 여러 가지 수열
- 로그함수의 그래프
- 적분
- 수열
- 수학질문답변
- 행렬
- 미적분과 통계기본
- 함수의 극한
- 중복조합
- Today
- Total
목록싸인법칙 (4)
수악중독
그림과 같이 반지름의 길이가 1인 원에 내접하는 정삼각형 \(\rm ABC\) 가 있다. 호 \(\rm BC\) 를 \(n\) 등분하여 양 끝점을 포함한 각 등분점을 차례로 \[{\rm P}_0 (={\rm B}), {\rm P}_1,\; {\rm P}_2 ,\; {\rm P}_3,\; \cdots, \; {\rm P}_{n-1}, \;{\rm P}_n (={\rm C})\] 이라 할 때, \(\lim \limits_{n \to \infty} \dfrac{\pi}{n} \sum \limits_{k=1}^{n} \overline{{\rm AP}_k}\) 의 값은? ① \(6\) ② \(7\) ③ \(8\) ④ \(9\) ⑤ \(10\) 정답 ①
연속된 세 자연수를 세 변의 길이로 하는 삼각형에 대하여 가장 큰 각의 크기가 가장 작은 각의 크기의 두 배가 될 때, 이 삼각형의 둘레의 길이의 합은? ① 15 ② 16 ③ 18 ④ 20 ⑤ 21 정답 ①
싸인법칙 (그림을 클릭하시면 선명하게 보실 수 있습니다.) 싸인법칙 증명 (그림을 클릭하시면 선명하게 보실 수 있습니다.)
이 중에서도 가장 출제 빈도가 높은 것은 삼각함수와 관련된 첫번째 극한이다. 대개의 경우 그림과 함께 출제되는 이 유형의 문제에서는 반드시 각도(angle)가 등장하게 되므로, 반드시 문제에서 싸인(sin)함수를 만들어내야 한다. 싸인함수를 만들어내는데 가장 유용한 것은 바로 싸인법칙이다. 다음의 예제를 풀어보자. 이 문제에서는 최종적으로 함수의 극한값을 묻고 있다. 문제에서 주어진 그림을 보면 각도 θ 가 등장하는 것을 볼 수 있다. 따라서 우리는 무조건 싸인함수(sin)를 만들어냐 하며, 싸인함수를 등장시키기 위한 가장 유용한 방법은 바로 싸인 법칙이 된다. 다음의 풀이에서 싸인을 만들어 내기 위해 싸인 법칙을 어떻게 사용했는지 보자. 싸인법칙을 이용하여 싸인함수를 등장시켰으며 결과적으로 삼각함수의 ..