일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 접선의 방정식
- 수학질문
- 미적분과 통계기본
- 함수의 극한
- 확률
- 적분과 통계
- 수열의 극한
- 수열
- 기하와 벡터
- 수학질문답변
- 수악중독
- 수능저격
- 적분
- 수학1
- 함수의 연속
- 로그함수의 그래프
- 이차곡선
- 함수의 그래프와 미분
- 수만휘 교과서
- 이정근
- 중복조합
- 수학2
- 행렬
- 도형과 무한등비급수
- 정적분
- 행렬과 그래프
- 미분
- 여러 가지 수열
- 경우의 수
- 심화미적
- Today
- Total
목록삼각함수의 적분 (4)
수악중독
$0$ 이 아닌 세 정수 $l, \; m, \; n$ 이 $$ |~l~|+|~m~|+|~n~| \le 10$$을 만족시킨다. $0 \le x \le \dfrac{3}{2}\pi$ 에서 정의된 연속함수 $f(x)$ 가 $f(0)=0, \; f\left ( \dfrac{3}{2}\pi \right ) = 1$ 이고 $$f'(x) = \begin{cases} l \cos x & \left ( 0 < x < \dfrac{\pi}{2} \right ) \\ m \cos x & \left ( \dfrac{\pi}{2} < x < \pi \right ) \\ n \cos x & \left (\pi < x < \dfrac{3}{2} \pi \right ) \end{cases}$$를 만족시킬 때, $\displaysty..
함수 \( f(x) = {\rm sin} \dfrac{x^2 + x }{2} \) 에 대한 보기의 설명 중에서 옳은 것을 모두 고르면? ㄱ. \( 0 < x < 1 \) 일 때, \( \dfrac{1}{2} {\rm sin} x \leq f(x) \leq {\rm sin} x \) 이다. ㄴ. 구간 \( (0,\;1)\)에서 곡선 \(y=f(x)\) 는 위로 볼록이다. ㄷ. \( \dfrac{1}{2} \leq \dfrac{1}{1-{\rm cos}1} \displaystyle\int_0^1 {f(x){\rm{d}}x \le 1} \) ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄷ 정답 ⑤
오른쪽 그림과 같이 중심이 원점이고 반지름의 길이가 \(4\)인 원 \({\rm C}_1\) 의 내부에서 반지름의 길이가 1인 원 \({\rm C}_2\) 를 \({\rm C}_1\) 에 접하면서 미끄러지지 않게 굴린다. 이 때, 원 \({\rm C}_2\) 위의 점 \(\rm P\) 의 처음 위치가 \((4,\;0)\) 이라면, 점 \(\rm P\) 의 시각 \(t\)에서의 위치는 \(\left ( 4\cos ^3 t,\;4 \sin ^3 t \right )\) 가 된다고 한다. 점 \(\rm P\) 가 처음 위치로 돌아올 때까지 움직인 거리를 구하시오. 정답 24 마지막에 에서 를 적분하면 가 아니라 로 해야 하네요. 그런데 계산할 때는 또 로 생각하고 계산해서 답은 제대로 나왔네요..ㅠㅠ 죄송합니다..