관리 메뉴


수악중독

기하와 벡터_공간도형과 공간좌표_정사영_난이도 상 본문

(9차) 기하와 벡터 문제 풀이/공간도형 및 공간좌표

기하와 벡터_공간도형과 공간좌표_정사영_난이도 상

수악중독 2009. 9. 2. 04:08

 

한 평면 위에 있지 않은 네 점 \(\rm A,\;B,\;C,\;D\) 에 대하여 선분 \(\rm BD\), 선분 \(\rm CD\), 선분 \(\rm AC\), 선분 \(\rm AB\) 각각의 중점 \(\rm E,\;F,\;G,\;H\) 는 한 평면 위에 있다. \(\overline {\rm AB}= \overline {\rm CD}=7\), \(\overline {\rm AC}=\overline {\rm BD}=5\), \(\overline {\rm BC}=6\) 이고 평면 \(\rm ABC\) 와 평면 \(\rm BCD\) 가 이루는 각이 \(60^o\) 일 때, 사각형 \(\rm EFGH\) 의 평면 \(\rm BCD\) 위로의 정사영의 넓이를 \(S\) 라 하자. 이 때, \(4S^2\) 의 값을 구하시오.

 


Comments