관리 메뉴


수악중독

HMMT 2015 Algebra #7 본문

HMMT/2015

HMMT 2015 Algebra #7

수악중독 2015. 3. 15. 16:13

Suppose (a1,  a2,  a3,  a4)(a_1, \; a_2 , \; a_3 , \; a_4) is a 4-term sequence of real numbers satisfying the following two conditions:

  • a3=a2+a1a_3=a_2+a_1 and a4=a3+a2a_4=a_3+a_2;

  • there exist rean numbers a,  b,  ca, \; b, \;c such that 

an2+bn+c=cos(an)an^2+bn+c=\cos(a_n)

for all n{1,  2,  3,  4} n \in \{1, \;2, \;3, \;4\}.

Compute the maximum possible value of cos(a1)cos(a4)\cos(a_1)-\cos(a_4) over all such sequences (a1,  a2,  a3,  a4)(a_1, \; a_2, \; a_3,\; a_4).