관리 메뉴


수악중독

미적분과 통계기본_미분_변화율_난이도 중 본문

(9차) 미적분 I 문제풀이/미분

미적분과 통계기본_미분_변화율_난이도 중

수악중독 2014. 6. 10. 00:42

그림과 같이 한 변의 길이가 \(20\) 인 정사각형 \(\rm ABCD\) 에서 점 \(\rm P\) 는 \(\rm A\) 에서 출발하여 변 \(\rm AB\) 위를 매초 \(2\) 씩 움직여 \(\rm B\) 까지, 점 \(\rm Q\) 는 \(\rm B\) 에서 \(\rm P\) 와 동시에 출발하여 변 \(\rm BC\) 위를 매초 \(3\) 씩 움직여 \(\rm C\) 까지 간다. 이때, 사각형 \(\rm DPBQ\) 의 넓이가 정사각형 \(\rm ABCD\) 의 넓이의 \(\dfrac{11}{20}\) 이 되는 순간의 삼각형 \(\rm PBQ\) 의 넓이의 시간(초)에 대한 순간변화율을 구하시오.

 

 

 

Comments