관리 메뉴




수악중독

수학2_함수의 극한_극한의 활용_난이도 중 본문

(8차) 수학2 질문과 답변/함수의 극한 및 연속성

수학2_함수의 극한_극한의 활용_난이도 중

수악중독 2014.05.22 11:04

그림과 같이 반지름의 길이가 \(3\) 이고 \(\angle \rm AOB = \dfrac{\pi}{3}\) 인 부채꼴 \(\rm AOB\) 에 내접하는 원을 \(\rm O'\) 이라 하자. 호 \(\rm AB\) 위의 한 점 \(\rm C\) 에 대하여 \(\angle \rm COB=\theta \; \left ( 0 < \theta < \dfrac{\pi}{3} \right )\) 일 때, 원 \(\rm O'\) 과 \(\overline{\rm OC}\) 가 만나는 두 점을 \(\rm P,\;Q\) 라 하고, 부채꼴 \(\rm COB\) 의 넓이를 \(S(\theta)\) 라 하자. \(\lim \limits_{\theta \to 0} \dfrac{\overline{\rm PQ}^2}{S(\theta)}=\dfrac{q}{p}\sqrt{3}\) 일 때, \(p+q\) 의 값을 구하시오. (단, \(p\) 와 \(q\) 는 서로소인 자연수이다.)

 




-->