관리 메뉴




수악중독

수학2_함수의 극한 의 활용_삼각함수의 극한_난이도 중 본문

(8차) 수학2 질문과 답변/함수의 극한 및 연속성

수학2_함수의 극한 의 활용_삼각함수의 극한_난이도 중

수악중독 2014.03.27 13:11

\(\overline{\rm AB}=\overline{\rm AC}=1\) 인 이등변삼각형 \(\rm ABC\) 에 대하여 \(\angle {\rm BAC}= \theta \; \left ( 0 < \theta < \dfrac{\pi}{2} \right )\) 라 하자. 점 \(\rm B\) 를 중심으로 하고 점 \(\rm A\) 를 지나는 원을 \(C_1\), 점 \(\rm C\) 를 중심으로 하고 점 \(\rm A\) 를 지나는 원을 \(C_2\) 라 할 때, \(C_1, \;C_2\) 각각에서 두 원이 겹치는 부분을 제외하여 얻어지는 두 부분의 넓이의 합을 \(S(\theta)\) 라 하자. \(\lim \limits_{\theta \to +0} \dfrac{S(\theta)}{\theta}=\alpha\) 일 때, \(\alpha^2\) 의 값을 구하시오.

 

 

풀이 보기

 




-->