관리 메뉴


수악중독

미적분과 통계기본_함수의 극한_극한의 활용_난이도 상 본문

(9차) 미적분 I 문제풀이/함수의 극한 및 연속

미적분과 통계기본_함수의 극한_극한의 활용_난이도 상

수악중독 2012. 3. 17. 23:33
반지름의 길이가 \(1\) 인 원 \(\rm O\) 위에 한 점 \(\rm A\) 가 있다. 점 \(\rm A\) 를 중심으로 하고 반지름의 길이가 \(r\) 인 원이 원 \(\rm O\) 와 만나는 점을 각각 \(\rm P, \;Q\) 라 하고, 원 \(\rm O\) 의 지름 \(\rm AB\) 와 만나는 점을 \(\rm R\) 라 하자. 사각형 \(\rm APRQ\) 의 넓이를 \(S(r)\) 라 할 때, \(\lim \limits_{r \to 2-0} \dfrac{S(r)}{\sqrt{2-r}}\) 의 값은? (단, \(0<r<2\))

 

① \(1\)          ② \(2\)          ③ \(3\)           ④ \(4\)           ⑤ \(5\)

Comments