일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 확률
- 수만휘 교과서
- 접선의 방정식
- 수학질문
- 수능저격
- 수열
- 기하와 벡터
- 함수의 극한
- 로그함수의 그래프
- 적분
- 미적분과 통계기본
- 수열의 극한
- 이정근
- 경우의 수
- 정적분
- 수학1
- 도형과 무한등비급수
- 수학2
- 함수의 그래프와 미분
- 수학질문답변
- 여러 가지 수열
- 미분
- 중복조합
- 이차곡선
- 적분과 통계
- 함수의 연속
- 수악중독
- 심화미적
- 행렬과 그래프
- 행렬
- Today
- Total
목록2008 (17)
수악중독
Three cubes are each formed from the pattern shown. They are then stacked on a table one on top of another so that the \(13\) visible numbers have the greatest possible sum. What is that sum?(A) \(154\) (B) \(159\) (C) \(164\) (D) \(167\) (E) \(189\) 정답 (C)
A function \(f\) has domain \([0, \; 2]\) and range \([0, \; 1]\). (The notation \([a, \; b]\) denotes \( \{ x\; : \; a \le x \le b \}\).) What are the domain and range, respectively, of the function \(g\) defined by \(g(x)=1-f(1+x)\) ? (A) \([-1, \; 1 ], \; [-1, \; 0]\)(B) \([-1, \; 1 ], \; [0, \; 1]\)(C) \([0, \; 2 ], \; [-1, \; 0]\)(D) \([1, \; 3 ], \; [-1, \; 0]\)(E) \([1, \; 3], \; [0, \; 1..
Points \(\rm A\) and \( \rm B\) lie on a circle centered at \( \rm O\), and \( \rm \angle AOB= 60 ^{\rm o} \). A ssecond circle is internally tangent to the first and tangent to both \( \overline{\rm OA}\) and \( \overline{\rm OB}\). What is the ratio of the area of the smaller circle to that of the larger circle? (A) \(\dfrac{1}{16}\) (B) \(\dfrac{1}{9}\) (C) \(\dfrac{1}{8}\) (D) \(\dfrac{1}{6}..
What is the area of the region defined by the inequality \(|3x-18| + |2y+7| \le 3 \) ? (A) \(3\) (B) \(\dfrac{7}{2}\) (C) \(4\) (D) \(\dfrac{9}{2}\) (E) \(5\) 정답 (A)
Let \(k=2008^2 + 2^{2008}\). What is the units digit of \(k^2 + 2^k\) ? (A) \(0\) (B) \(2\) (C) \(4\) (D) \(6\) (E) \(8\) 정답 (D)
The numbers \(\log \left ( a^3 b^7 \right ) , \log \left ( a^5 b^{12} \right ) \), and \(\log \left ( a^8 b^{15} \right )\) are the first three terms of an arithmetic sequence, and the \(12^{th}\) term of the sequence is \( \log \left ( b^n \right ) \). What is \(n\) ? (A) \(40\) (B) \(56\) (C) \(76\) (D) \(112\) (E) \(143\) 정답 (D)
Let \(a_1 , \; a_2 , \; \cdots\) be a sequence of integers determined by the rule \(a_n = \dfrac{a_{n-1}}{2}\) if \(a_{n-1}\) is even and \(a_n = 3a_{n-1} +1\) if \(a_{n-1}\) is odd. For how many positive integers \(a_1 \le 2008\) is it true that \(a_1\) is less thatn each of \(a_2 , \; a_3 ,\) and \(a_4\) ? (A) \(250\) (B) \(251\) (C) \(501\) (D) \(502\) (E) \(1004\) 정답 (D)