일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 수만휘 교과서
- 수악중독
- 심화미적
- 중복조합
- 접선의 방정식
- 경우의 수
- 함수의 극한
- 도형과 무한등비급수
- 미적분과 통계기본
- 수학2
- 수능저격
- 적분과 통계
- 함수의 연속
- 수학1
- 적분
- 수열의 극한
- 정적분
- 수학질문
- 수열
- 수학질문답변
- 행렬
- 미분
- 이정근
- 함수의 그래프와 미분
- 이차곡선
- 여러 가지 수열
- 기하와 벡터
- 확률
- 로그함수의 그래프
- 행렬과 그래프
- Today
- Total
목록삼차함수 그래프 개형 (2)
수악중독
함수의 오목과 볼록 그리고 변곡점에 대한 보다 상세한 내용을 알면 도움이 됩니다. 아래 영상을 확인하시기 바랍니다. 일반적으로 최고차항의 계수가 양수인 삼차함수 \(y=f(x)\) 의 그래프의 개형은 다음 세 가지 중 하나이다. 다른 개형은 존재하지 않기 때문에 이 세가지만 기억하고 있으면 된다. 1. 극댓값과 극솟값을 모두 갖는 경우 (\(f'(x)=0\) 이 서로 다른 두 실근을 갖는 경우) 가장 시험에 많이 등장하는 유형의 그래프이다. 극댓값과 극솟값이 모두 존재하며 우리가 삼차함수의 그래프를 생각할 때 떠 올리는 그래프이다. 예를 들면, \(f(x) = x^3 - x\) 와 같은 경우이다. 2. 극댓값과 극솟값을 모두 갖지 않는 경우 (\(f'(x)=0\) 이 중근을 갖는 경우) \(f'(x) =..
최고차항의 계수가 $-1$ 인 삼차함수 $f(x)$ 가 다음 조건을 만족시킨다. (가) $f(0)=f'(0)=0$(나) 방정식 $f(x)=0$ 은 양의 실근을 갖는다. 양수 $t$ 와 함수 $f(x)$ 에 대하여 함수 $g(x)$ 를$$g(x) = \left \{ {\begin{array}{ll}{ f(x)}&{(x \le 0, \; x \ge t)}\\{\dfrac{f(t)}{t}x}&{\left( {0 < x < t} \right)}\end{array}} \right.$$ 라 하자. 함수 $g(x)$ 가 미분가능하지 않은 실수 $x$ 가 오직 한 개 존재하도록 하는 모든 양수 $t$ 의 값의 합이 $\dfrac{15}{2}$ 일 때, $f(-4)$ 의 값을 구하시오. 정답 $144$