일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 여러 가지 수열
- 미적분과 통계기본
- 함수의 극한
- 수악중독
- 정적분
- 행렬
- 기하와 벡터
- 적분과 통계
- 수학1
- 경우의 수
- 행렬과 그래프
- 수만휘 교과서
- 함수의 그래프와 미분
- 수열의 극한
- 접선의 방정식
- 적분
- 심화미적
- 확률
- 수학질문답변
- 수열
- 수능저격
- 이정근
- 수학질문
- 로그함수의 그래프
- 중복조합
- 이차곡선
- 수학2
- 미분
- 도형과 무한등비급수
- 함수의 연속
- Today
- Total
목록등비수열의 일반항 (11)
수악중독
공차가 $0$ 이 아닌 등차수열 $\{a_n\}$ 과 공비가 $1$ 이 아닌 등비수열 $\{b_n\}$ 이 다음 조건을 만족시킨다. (가) $a_2=b_4, \;\; a_5 = b_7, \;\; a_9=b_{10}$(나) $\sum \limits_{k=1}^{10} \left ( b_{3k-2} \right ) ^2 = \dfrac{135}{112} \sum \limits_{k=1}^{20} b_{3k-2}$ $\sum \limits_{k=1}^{24} a_k$ 의 값을 구하시오. 정답 $195$
수열 $\{a_n\}$ 은 첫째항이 $2$, 공비가 $2$ 인 등비수열이고, 수열 $\{b_n\}$ 은 첫째항이 $5$, 공차가 $3$ 인 등차수열이다. 두 수열 $\{a_n\}, \; \{b_n\}$ 의 공통인 항을 작은 것부터 차례로 나열한 수열을 $\{c_n\}$ 이라 할 때, 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. $c_1 = a_3$ㄴ. $c_n = \sum \limits_{k=1}^{2n}a_k+2\; \; (n=1, \; 2, \; 3, \; \cdots)$ㄷ. $c_k=b_l$ 을 만족시키는 두 자연수 $k, \; l$ 에 대하여 $c_{k+2} = b_{16l+10}$ 이다. ① ㄱ ② ㄱ, ㄴ ③ ㄱ, ㄷ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤
등차수열 $\{a_n\}$ 과 공비가 $1$ 보다 작은 등비수열 $\{b_n\}$ 이 $$ a_1 + a_8 = 8, \;\; b_2b_7=12, \;\; a_4=b_4, \;\; a_5=b_5$$ 를 모두 만족시킬 때, $a_1$ 의 값을 구하시오. 정답 $18$
등비수열 등비수열의 합과 일반항 원리합계 관련 예제 등비수열_난이도 하등비수열의 일반항_난이도 하등차등비수열의 일반항_난이도 하등차등비수열의 일반항_난이도 하등비수열의 일반항_난이도 중등비수열의 일반항_난이도 중 등비수열의 일반항_난이도 중등차&등비수열의 합과 일반항_난이도 중 등차 등비 중항_난이도 하등비중항_난이도 중 등비중항_난이도 중 등차중항등비중항_난이도 중 등차 등비 중항_난이도 중 등비중항_난이도 상 등비중항의 활용_난이도 상 등비수열을 이루는 세 수_난이도 상등비수열을 이루는 네 수_난이도 상 등비수열의 합_난이도 하등비수열의 합_난이도 하등비수열의 합_난이도 중 등비수열의 합_난이도 중 등비수열의 합_난이도 중 등비수열의 합_난이도 중 등비수열의 합_난이도 중 등비수열의 합_난이도 중 등..
등비수열 \(\{a_n\}\) 에 대하여 수열 \(\{2a_n - a_{n+1}\}\) 은 첫째항이 \(8\), 공비가 \(-2\) 인 등비수열을 이룬다. 이때, \(a_5\) 의 값을 구하시오. 정답 \(32\)
첫째항이 \(1\), 공비가 \(3\) 인 등비수열 \(\{a_n\}\) 에서 첫째항부터 제 \(n\) 항까지의 합을 \(S_n\) 이라 하자. 수열 \(\{S_n+p\}\) 가 등비수열을 이루도록 하는 상수 \(p\) 의 값은? ① \(1\) ② \(\dfrac{1}{2}\) ③ \(\dfrac{1}{3}\) ④ \(\dfrac{1}{4}\) ⑤ \(\dfrac{1}{5}\) 정답 ②
자연수 \(n\) 에 대하여 함수 \(y=2^{x+n}\) 의 그래프가 함수 \(y= \left (\dfrac{1}{2} \right )^x\) 의 그래프와 만나는 점을 \({\rm P}_n\) 이라 하자. 점 \({\rm P}_n\) 의 \(x\) 좌표를 \(a_n\), \(y\) 좌표를 \(b_n\) 이라 할 때, 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. 수열 \(\{ a_n\} \) 은 등차수열이다. ㄴ. 임의의 자연수 \(m, \;n\) 에 대하여 \(b_m b_n = b_{m+n}\) 이다. ㄷ. \(2b_n < b_{n+1} \) 을 만족하는 자연수 \(n\) 이 존재한다. ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ③
수열 \(\{a_n\}\) 에 대하여 \(b_n = a_{n+1} -a_n\) 이라 할 때, 옳은 것을 에서 모두 고른 것은? (단, \(a_n b_n \ne 0\) ) ㄱ. 수열 \(\{a_n\}\) 이 등비수열이면 수열 \(\{b_n\}\) 도 등비수열이다. ㄴ. 수열 \(\{b_n\}\) 이 등비수열이면 수열 \(\{a_n\}\) 도 등비수열이다. ㄷ. 수열 \(\{a_n\}\) 이 등비수열이면 수열 \(\{a_n b_n\}\) 도 등비수열이다. ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄱ, ㄷ ⑤ ㄴ, ㄷ 정답 ④
등차수열 \(\{a_n\}\) 과 등비수열 \(\{b_n\}\) 은 다음 조건을 만족한다. (가) \(a_1 =2 ,\;\; b_1 =2\) (나) \(a_2 =b_2 ,\;\; a_4 = b_4\) \(a_5 +b_5\) 의 값을 구하시오. (단, 수열 \(\{b_n\}\) 의 공비는 \(1\) 이 아니다.) 정답 10