일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 수능저격
- 수학1
- 확률
- 수학2
- 로그함수의 그래프
- 접선의 방정식
- 도형과 무한등비급수
- 기하와 벡터
- 미분
- 함수의 극한
- 미적분과 통계기본
- 함수의 그래프와 미분
- 수만휘 교과서
- 적분
- 심화미적
- 행렬과 그래프
- 이정근
- 수학질문답변
- 수열
- 정적분
- 수학질문
- 적분과 통계
- 중복조합
- 이차곡선
- 수열의 극한
- 수악중독
- 여러 가지 수열
- 경우의 수
- 함수의 연속
- 행렬
- Today
- Total
목록등비수열의 극한 (5)
수악중독
실수 $t$ 에 대하여 정의역이 $\{x \; | \; -1 \le x \le 1\}$ 인 함수 $f(x)=\left | x^2-tx-2 \right |$ 의 최댓값을 $g(t)$ 라 하자. 또한 함수 $g(t)$ 에 대해서 함수 $h(t)$ 가 $$h(t)=\lim \limits_{n \to \infty} \dfrac{1}{1+\{g(t-1)-3\}^{2n}}$$ 과 같이 정의된다고 하자. 함수 $h(t)$ 가 $t=k$ 에서 불연속이 될 때, 모든 실수 $k$ 의 값의 합을 구하시오. 정답 $3$
수열의 수렴과 발산 극한값의 계산 (1) - 수열의 극한에 대한 기본 성질, $\dfrac{\infty}{\infty}$ 꼴의 극한값의 계산 극한값의 계산 (2) - $\infty - \infty$ 꼴의 극한값의 계산 극한값의 계산 (3) - 수열의 극한의 대소 관계 등비수열의 극한 수열의 극한 심화개념 점화식과 극한 수열의 극한 유형정리 수열의 극한 진위형 유형정리 위 파일을 다운로드하여 풀어보세요. 해설지가 첨부되어 있습니다. 모르는 문제는 언제든지 댓글로 질문해주세요~~ 목록 다음
자연수 \(n\) 에 대하여 원점 \(\rm O\) 와 점 \((n, \; 0)\) 을 이은 선분을 밑변으로 하고, 높이가 \(h_n\) 인 삼각형의 넓이를 \(a_n\) 이라 하자. 수열 \(\{ a_n\}\) 은 첫째항이 \(\dfrac{1}{2}\) 인 등비수열일 때, 에서 옳은 것을 모두 고른 것은? ㄱ. 모든 자연수 \(n\) 에 대하여 \(a_n = {\dfrac{1}{2}} \) 이면 \(h_n = {\dfrac{1}{n}}\) 이다. ㄴ. \(h_2 = {\dfrac{1}{4}}\) 이면 \(a_n = \left ({\dfrac{1}{2}} \right ) ^n \) 이다. ㄷ. \(h_2 < {\dfrac{1}{2}} \) 이면 \(\lim \limits _{n\to \infty} n h..
다음과 같이 수가 증가하는 컴퓨터 바이러스가 있다. 각 단계마다 각 개체는 다른 개체와는 독립적으로 \(p\) 의 확률로 \(1\) 개, \(1-p\) 의 확률로 \(2\) 개의 새로운 개체를 다음 단계로 남기고 자신은 소멸된다. 예를 들면, 다음은 \(1\) 개체가 제 \(0\) 단계에서 시작하여 제 \(4\) 단계에 바이러스가 \(4\) 개체가 된 경우 중 하나를 나타낸 것이다. 지금 컴퓨터에 침입한 바이러스 \(1\) 개체가 제 \(0\) 단계에서 시작하여 제 \(n\) 단계에 \(m\) 개의 개체일 확률을 \({\rm P}_n (m)\) 이라고 할 때, \(\lim \limits _{n \to \infty} {\Large \frac{{\rm P}_n (2)}{p^n}}\) 의 값은? (단, \(0
행렬 \(A= \left ( \matrix {4 & -2a \\ 2 & -a} \right ) \) 와 수열 \(\{x_n\},\;\; \{y_n\}\) 에 대하여 \[ A^n \left ( \matrix {4 \\ 1} \right ) = \left ( \matrix {x_n \\ y_n} \right ) \;\;\; (n=1,\; 2,\; 3,\; \cdots) \] 인 관계가 있다. \(\lim \limits _{n \to \infty} x_n = \lim \limits _{n \to \infty} y_n =0 \) 일 때, 모든 정수 \(a\) 의 값의 합을 구하시오. 정답 12