일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
- 이정근
- 수학질문답변
- 이차곡선
- 수학1
- 함수의 그래프와 미분
- 수능저격
- 미분
- 기하와 벡터
- 함수의 연속
- 수학2
- 정적분
- 미적분과 통계기본
- 로그함수의 그래프
- 수학질문
- 중복조합
- 수열
- 여러 가지 수열
- 도형과 무한등비급수
- 접선의 방정식
- 수만휘 교과서
- 수악중독
- 행렬과 그래프
- 경우의 수
- 적분
- 적분과 통계
- 수열의 극한
- 확률
- 함수의 극한
- 심화미적
- 행렬
- Today
- Total
목록도형과 무한등비급수 (56)
수악중독
그림과 같이 길이가 \(4\) 인 선분 \(\rm A_1 B\) 를 지름으로 하는 반원 \(\rm D_1\) 이 있다. 호 \(\rm A_1 B\) 를 이등분하는 점을 \(\rm C_1\), 점 \(\rm B\) 를 지나면서 선분 \(\rm A_1 C_1\) 과 접하고 중심이 선분 \(\rm A_1 B\) 위에 있는 반원을 \(\rm D_2\), 반원 \(\rm D_2\) 가 선분 \(\rm A_1 B\) 와 만나는 점을 \(\rm A_2\) 라 하자. 호 \(\rm A_2 B\) 를 이등분하는 점을 \(\rm C_2\), 점 \(\rm B\) 를 지나면서 선분 \(\rm A_2 C_2\) 와 접하고 중심이 선분 \(\rm A_1 B\) 위에 있는 반원을 \(\rm D_3\), 반원 \(\rm D_3\)..
그림과 같이 정육각형 \(\rm H_1\) 의 각 변을 지름으로 하는 반원을 정육각형 \(\rm H_1\) 의 내부에 그리고, 반원이 겹쳐지는 어두운 부분의 넓이의 합을 \(S_1\), 각 반원의 호의 길이를 이등분하는 점을 꼭짓점으로 하는 정육각형을 \(\rm H_2\) 라 하자. 정육각형 \(\rm H_2\) 의 각 변을 지름으로 하는 반원을 정육각형 \(\rm H_2\) 의 내부에 그리고, 반원이 겹쳐지는 어두운 부분의 넓이의 합을 \(S_2\), 각 반원의 호의 길이를 이등분하는 점을 꼭짓점으로 하는 정육각형을 \(\rm H_3\) 이라 하자. 이와 같은 방법으로 정육각형 \(\rm H_{\it n}\) 의 각 변을 지름으로 하는 반원을 정육각형 \(\rm H_{\it n}\) 의 내부에 그리고,..
오른쪽 그림과 같이 원점 \(\rm O\) 와 점 \({\rm A}_0 (10,\;0)\) 에 대하여 제 \(1\) 사분면 위에 \(\overline {\rm OA_0}\) 를 한 변으로 하는 정삼각형 \(\rm OA_0 A_1\) 을 만들고 \(\overline {\rm A_0 A_1}\) 을 \(1:2\) 로 내분하는 점을 \(\rm B_1\) 이라 한다. 또, \(\triangle \rm OA_0 A_1\) 밖에 \(\overline{\rm A_1 B_1}\) 을 한 변으로 하는 정삼각형 \(\rm A_1 B_1 A_2\) 를 만들고 \(\overline {\rm A_1 A_2}\) 를 \(1:2\) 로 내분하는 점을 \(\rm B_2\) 라 한다. 이와 같은 과정을 한없이 반복하면 점 \(\rm ..
아래 그림과 같이 원 \(\rm O_1 , \;\; O_2 , \;\; O_3 , \;\; \cdots\) 은 서로 외접하면서 두 직선 \(y=3x,\;\; y= {\dfrac{1}{3}} x \) 에 접한다. 원 \(\rm O_1\) 의 중심의 좌표는 \(\left ( \sqrt {10} ,\; \sqrt{10} \right ) \) 이고, 원 \(\rm O_{\it n}\) 의 반지름의 길이를 \(r_n\) 이라 할 때, 무한급수 \(\sum \limits _{n=1}^{\infty} \sqrt {r_n} = a\sqrt{2} +b \sqrt {10} \) 이다. 이 때, 두 유리수 \(a,\; b\) 에 대하여 \(a+b\) 의 값은? ① \(1\) ② \(\dfrac{3}{2}\) ③ \(2\) ..
오른쪽 그림과 같이 \(\overline {\rm AB_1} = \overline {\rm AC_1} =3,\;\; \overline {\rm B_1 C_1}=2\) 인 이등변삼각형의 세 변에 접하는 원 \(\rm O_1\) 을 그린 후, 원 \(\rm O_1\) 에 접하고 삼각형의 두 변 \(\overline {\rm AB_1} \) 과 \(\overline {\rm AC_1}\) 에 접하는 원을 \(\rm O_2\), 원 \(\rm O_2\) 에 접하고 삼각형의 두 변 \(\overline {\rm AB_1} \) 과 \(\overline {\rm AC_1}\) 에 접하는 원을 \(\rm O_3 , \cdots \) 와 같이 원을 한없이 그려 나간다. 이 때, 원 \(\rm O_1 , \; O_2 ,..
좌표평면 위의 네 점 \(\rm O (0,\;0),\;\; A(1,\;0),\;\; B(1,\;1),\;\;C(0,\;1)\) 을 꼭짓점으로 하는 정사각형을 \(A_1\) 이라 하고, \(A_1\) 을 합동인 네 개의 정사각형으로 나누었을 때, 오른쪽 위의 정사각형을 \(A_2\) 라 한다. \(A_2\) 를 합동인 네 개의 정사각형으로 나누었을 때, 왼쪽 아래의 정사각형을 \(A_3\)라 하고, \(A_3\) 을 합동인 네 개의 정사각형으로 나누었을 때의 오른쪽 위의 정사각형을 \(A_4\) 라 한다. 이와 같이, 정사각형 \(A_5 ,\; A_6 , \; A_7 , \; \cdots \) 을 한없이 만들어 나갈 때, 정사각형 \(A_n\) 의 두 대각선의 교점의 \(x\) 좌표를 \(a_n\) 이라 ..