그림과 같이 두 점 $\mathrm{F}(c, \; 0)$, $\mathrm{F'}(-c, \; 0)$ $(c>0)$ 을 초점으로 하는 타원 $\dfrac{x^2}{81}+\dfrac{y^2}{75}=1$ 과 두 점 $\mathrm{F, \; F'}$ 를 초점으로 하는 쌍곡선 $\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ 이 있다. 타원과 쌍곡선이 만나는 점 중 제$1$사분면 위의 점을 $\mathrm{P}$ 라 하고, 선분 $\mathrm{F'P}$ 가 쌍곡선과 만나는 점 중 $\mathrm{P}$ 가 아닌 점을 $\mathrm{Q}$ 라 하자. 두 점 $\mathrm{P, \; Q}$ 가 다음 조건을 만족시킬 때, 점 $\mathrm{P}$ 의 $x$ 좌표는? (단, $a$ 와 $b$ 는 양수이다.)