관리 메뉴


수악중독

적분과 통계_적분_입체의 부피_난이도 상 본문

(9차) 미적분 II 문제풀이/적분

적분과 통계_적분_입체의 부피_난이도 상

수악중독 2009. 7. 14. 02:44
xyzxyz 공간에 있어, 평면 z=0z=0 위의 중심이 원점이고 반지름 22 인 원을 밑면으로 하고, 점 (0,  0,  1)(0,\;0,\;1) 을 꼭지점으로 하는 원뿔을 A\rm A 라 하자. 또, 평면 z=0z=0 위의 점 (1,  0,  0)(1,\;0,\;0) 을 중심으로 하는 반지름 11 인 원을 H\rm H, 평면 z=1z=1 위의 점 (1,  0,  1)(1,\;0,\;1) 을 중심으로 하는 반지름 11 인 원을 K\rm K 라 하자. H\rm HK\rm K 를 밑면으로 하는 원기둥을 B\rm B 라 하고, 원뿔 A\rm A 와 원기둥 B\rm B 의 공통부분을 C\rm C 라 하자. 0t10 \le t \le 1 인 실수 tt 에 대하여, 평면 z=tz=t 에 의한 C\rm C 의 절단면의 넓이를 S(t)S(t) 라 하자.
 
1) 0θπ20 \le \theta \le \dfrac{\pi}{2}θ\theta 에 대하여 t=1cosθt=1-\cos \theta 일 때, S(t)S(t)θ\theta 로 나타내어라.
2) C\rm C 의 부피 01S(t)dt\displaystyle \int _{0}^{1} S(t) dt 를 구하여라.




Comments