일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 수학질문
- 심화미적
- 수만휘 교과서
- 도형과 무한등비급수
- 미분
- 수악중독
- 적분
- 함수의 연속
- 확률
- 로그함수의 그래프
- 접선의 방정식
- 행렬
- 수학질문답변
- 중복조합
- 적분과 통계
- 수학1
- 이차곡선
- 행렬과 그래프
- 수열
- 미적분과 통계기본
- 기하와 벡터
- 수열의 극한
- 수능저격
- 수학2
- 이정근
- 경우의 수
- 함수의 그래프와 미분
- 정적분
- 여러 가지 수열
- 함수의 극한
- Today
- Total
목록평면 운동하는 점의 속도 (2)
수악중독
좌표평면의 $ x$ 축, $y$ 축 위를 움직이는 두 점 $ \rm A, \; B$ 에 대하여서 시각 $ t\;(t>0)$ 에서의 위치가 ${\rm A} \left ( \dfrac{1}{3} t^3+4t, \; 0 \right ), \;\; {\rm B} \left ( 0, \; \sqrt{13} \right ) $ 이고 $\overrightarrow{\rm OP} = \overrightarrow{\rm OA} + \overrightarrow{\rm OB}$ 라 하자. 점 $\rm P$ 의 속력이 $7$ 일 때, 가속도의 크기는? ① $2$ ② $2\sqrt{2}$ ③ $3$ ④ $4$ ⑤ $3\sqrt{2}$ 정답 ②
좌표평면 위를 움직이는 점 $\rm P$ 의 시각 $ t$ 에서의 위치 $(x, \; y)$ 가 $ x=2t, \; y=t^2-2t+4$ 일 때, 점 $ \rm P$ 의 시각 $t=2$ 에서의 속력은? ① $\sqrt{5}$ ② $ 2\sqrt{2}$ ③ $\sqrt{10}$ ④ $ 2\sqrt{3}$ ⑤ $\sqrt{15}$ 정답 ② $\dfrac{dx}{dt}=2, \;\; \dfrac{dy}{dt}=2t-2$ 이므로 속력 $ \left | \overrightarrow{v} \right | = \sqrt{\left ( \dfrac{dx}{dt} \right )^2 + \left ( \dfrac{dy}{dt} \right) ^2 } = \sqrt{2^2 +(2t-2)^2}$따라서 $t=2$ 에서의 속력..