일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 미적분과 통계기본
- 수만휘 교과서
- 이정근
- 중복조합
- 수학질문답변
- 미분
- 확률
- 수열의 극한
- 수악중독
- 적분과 통계
- 적분
- 행렬
- 함수의 연속
- 기하와 벡터
- 정적분
- 이차곡선
- 수학질문
- 접선의 방정식
- 수능저격
- 여러 가지 수열
- 로그함수의 그래프
- 심화미적
- 함수의 극한
- 경우의 수
- 수학1
- 행렬과 그래프
- 수열
- 함수의 그래프와 미분
- 수학2
- 도형과 무한등비급수
- Today
- Total
목록모의고사해설 (13)
수악중독
다항식 $f(x)=x^4+(a+2)x^3+bx^2+ax+6$ 과 최고차항의 계수가 $1$ 이고 계수와 상수항이 모두 실수인 두 다항식 $g(x), \; h(x)$ 가 다음 조건을 만족시킨다. (가) 방정식 $f(x)=0$ 은 실근을 갖지 않는다.(나) 다항식 $f(x)$ 는 두 다항식 $g(x), \; h(x)$ 를 인수로 갖고, $h(x)$ 를 $g(x)$ 로 나눈 나머지는 $-4x-1$ 이다. $a^2+b^2$ 의 값을구하시오. (단, $a, \; b$ 는 상수이다.) 더보기정답 $5$
집합 $X=\{1, \; 2, \; 3, \; 4\}$ 에 대하여 함수 $f:X \to X$ 가 다음 조건을 만족시킨다. (가) 집합 $X$ 의 모든 원소 $x$ 에 대하여 $x+f(f(x)) \le 5$ 이다. (나) 함수 $f$ 의 치역은 $\{1, \; 2, \; 4\}$ 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. $f(f(4))=1$ ㄴ. $f(3)=4$ ㄷ. 가능한 함수 $f$ 의 개수는 $4$ 이다. ① ㄱ ② ㄱ, ㄴ ③ ㄱ, ㄷ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 더보기 정답 ②
그림과 같이 두 직선 $l_1 : y=mx \; (m>1)$ 과 $l_2 : y=\dfrac{1}{m}x$ 에 동시에 접하는 원의 중심을 $\mathrm{A}$ 라 하자. 직선 $l_1$ 과 원의 접점을 $\mathrm{P}$, 직선 $l_2$ 와 원의 접점을 $\mathrm{Q}$, 직선 $\mathrm{PQ}$ 가 $x$ 축과 만나는 점을 $\mathrm{R}$ 이라 할 때, 세 점 $\mathrm{P, \; Q, \; R}$ 이 다음 조건을 만족시킨다. (가) $\overline{\mathrm{PQ}}=\overline{\mathrm{QR}}$ (나) 삼각형 $\mathrm{OPQ}$ 의 넓이는 $24$ 이다. 직선 $l_1$ 과 직선 $\mathrm{AQ}$ 의 교점을 $\mathrm{B}$ 라 ..
집합 $X=\{1, \; 2, \; 3, \; 4, \; 5, \; 6\}$ 에 대하여 다음 조건을 만족시키는 함수 $f:X \to X$ 의 개수를 구하시오. (가) $x_1 \in X, \; x_2 \in X$ 인 임의의 $x_1, \; x_2$ 에 대하여 $1 \le x_1 f(x_2)$ 이다. (나) 함수 $f$ 의 역함수가 존재하지 않는다. 더보기 정답 $510$
$1$ 보다 큰 자연수 $k$ 에 대하여 전체집합 $$U=\{x|x\text{ 는 } k \text{ 이하의 자연수}\}$$ 의 두 부분집합 $$A=\{x|x\text { 는 } k \text{ 이하의 짝수}\}, \quad B=\{x|x \text { 는 } k \text{ 의 약수}\}$$ 가 $n(A) \times n((A \cup B)^C)=15$ 를 만족시킨다. 집합 $(A \cup B)^C$ 의 모든 원소의 곱을 구하시오. 더보기 정답 $189$
두 상수 $a, \; b$ 에 대하여 함수 $f(x)=\sqrt{-x+a}-b$ 라 하자. 함수 $$g(x)=\begin{cases} |f(x)|+b & (x \le a) \\ -f(-x+2a)+|b| & (x>a) \end{cases}$$ 와 두 실수 $\alpha, \; \beta \; (\alpha < \beta)$ 는 다음 조건을 만족시킨다. (가) 실수 $t$ 에 대하여 함수 $y=g(x)$ 의 그래프와 직선 $y=t$ 의 교점의 개수를 $h(t)$ 라 하면 $h(\alpha) \times h(\beta)=4$ 이다. (나) 방정식 $\{g(x)-\alpha\}\{g(x)-\beta\}=0$ 을 만족시키는 실수 $x$ 의 최솟값은 $-30$, 최댓값은 $15$ 이다. $\{g(150)\}^2$ ..
$a_1=3, \; a_2=6$ 인 등차수열 $\{a_n\}$ 과 모든 항이 양수인 수열 $\{b_n\}$ 이 모든 자연수 $n$ 에 대하여 $$\sum \limits_{k=1}^n a_k (b_k)^2=n^3-n+3$$ 을 만족시킬 때, $\lim \limits_{n \to \infty} \dfrac{a_n}{b_nb_{2n}}$ 의 값은? ① $\dfrac{3}{2}$ ② $\dfrac{3\sqrt{2}}{2}$ ③ $3$ ④ $3\sqrt{2}$ ⑤ $6$ 더보기 정답 ②
자연수 $n$ 에 대하여 직선 $y=2nx$ 가 곡선 $y=x^2+n^2-1$ 과 만나는 두 점을 각각 $\mathrm{A}_n, \; \mathrm{B}_n$ 이라 하자. 원 $(x-2)^2+y^2=1$ 위의 점 $\mathrm{P}$ 에 대하여 삼각형 $\mathrm{A}_n \mathrm{B}_n \mathrm{P}$ 의 넓이가 최대가 되도록 하는 점 $\mathrm{P}$ 를 $\mathrm{P}_n$ 이라 할 때, 삼각형 $\mathrm{A}_n \mathrm{B}_n \mathrm{P}_n$ 의 넓이를 $S_n$ 이라 하자. $\lim \limits_{n \to \infty}\dfrac{S_n}{n}$ 의 값은? ① $2$ ② $4$ ③ $6$ ④ $8$ ⑤ $10$ 더보기 정답 ③
자연수 $n$ 에 대하여 함수 $f(x)$ 를 $$f(x)=\dfrac{4}{n^3} x^3 +1$$ 이라 하자. 원점에서 곡선 $y=f(x)$ 에 그은 접선을 $l_n$, 접선 $l_n$ 의 접점을 $\mathrm{P}_n$ 이라 하자. $x$ 축과 직선 $l_n$ 에 동시에 접하고 점 $\mathrm{P}_n$ 을 지나는 원 중 중심의 $x$ 좌표가 양수인 것을 $C_n$ 이라 하자.원 $C_n$ 의 반지름의 길이를 $r_n$ 이라 할 때, $40 \times \lim \limits_{n \to \infty} n^2 (4r_n-3)$ 의 값을 구하시오. 더보기 정답 $270$
최고차항의 계수가 $1$ 인 삼차함수 $f(x)$ 와 자연수 $m$ 에 대하여 구간 $(0, \; \infty)$ 에서 정의된 함수 $g(x)$ 를 $$g(x)=\lim \limits_{n \to \infty} \dfrac{f(x)\left (\dfrac{x}{m} \right )^n +x}{\left (\dfrac{x}{m} \right )^n+1}$$ 라 하자. 함수 $g(x)$ 는다음 조건을 만족시킨다. (가) 함수 $g(x)$ 는 구간 $(0, \; \infty)$ 에서 미분가능하고, $g'(m+1) \le 0$ 이다. (나) $g(k)g(k+1)=0$ 을 만족시키는 자연수 $k$ 의 개수는 $3$ 이다. (다) $g(l) \ge g(l+1)$ 을 만족시키는 자연수 $l$ 의 개수는 $3$ 이다...