일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 미적분과 통계기본
- 수학질문답변
- 함수의 그래프와 미분
- 도형과 무한등비급수
- 수열
- 행렬
- 행렬과 그래프
- 로그함수의 그래프
- 수능저격
- 접선의 방정식
- 수악중독
- 심화미적
- 기하와 벡터
- 이차곡선
- 수학1
- 수만휘 교과서
- 중복조합
- 확률
- 이정근
- 적분
- 미분
- 함수의 극한
- 정적분
- 적분과 통계
- 여러 가지 수열
- 수학2
- 함수의 연속
- 수열의 극한
- 경우의 수
- 수학질문
- Today
- Total
목록중복순열 (13)
수악중독
개념정리 1. 원순열 2. 다각형 순열 3. 중복순열 4. 같은 것이 있는 순열 5. 중복조합 6. 중복조합 예제풀이 7. 이항정리 8. 이항계수의 성질 9. 이항계수의 성질 예제풀이 10. (보너스) $(1+x)^{2n}$ 에서 $x^n$ 의 계수 11. (보너스) 이항계수의 성질 심화 (1) 12. (보너스) 이항계수의 성질 심화 (2) 13. (보너스) 이항계수의 성질 심화 (3) 유형정리 1. 경우의 수 2. 원순열 3. 중복순열 4. 같은 것이 있는 순열 5. 최단 거리 6. 중복조합 7. 중복조합-나열 8. 중복조합-분배 9. 중복조합-방정식 10. 중복조합-함수의 개수 11. 이항정리 12. 이항계수의 성질 다음
집합 $X=\{1, \; 2, \;3, \; 4\}$ 에서 집합 $Y=\{1, \; 2, \; 3, \; 4, \; 5\}$ 로의 함수 중에서 $$f(1)+f(2)+f(3)-f(4)=3m\;\; (m 은\; 정수)$$ 를 만족시키는 함수 $f$ 의 개수를 구하시오. 정답 $209$
집합 $\rm U=\{1, \; 2, \; 3, \; \cdots, \; 2017 \}$ 에 대하여 $\rm U$ 의 부분집합 $\rm A, \; B, \; C$ 의 관계가 아래 벤 다이어그램과 같다고 할 때, 부분집합 $\rm A, \; B, \; C$ 를 구성할 수 있는 방법의 수는? (단, $\rm A, \; B, \; C$ 는 모두 공집합이 아니다.)① $3^{2016} - 2^{2017} +1$② $3^{2017} - 2^{2017} +1$③ $3^{2017} - 2^{2018} +1$④ $3^{2018} - 2^{2017} +1$⑤ $3^{2018} - 2^{2018} +1$ 정답 ③ 첫 번째 방법먼저 전체 집합의 영역을 세 개로 나누자.먼저 집합 $\rm A-C$ 가 나타내는 영역을 $a$ ..
최대공약수가 \(5!\) 이고 최소공배수가 \(13!\) 인 두 자연수 \(k, \; n \;\; (k \le n)\) 의 순서쌍 \((k,\; n)\) 의 개수는? ① \(25\) ② \(27\) ③ \(32\) ④ \(36\) ⑤ \(49\) 정답 ③
세 수 $0, \;1, \;2$ 중에서 중복을 허락하여 다섯 개의 수를 택해 다음 조건을 만족시키도록 일렬로 배열하여 자연수를 만든다. (가) 다섯 자리의 자연수가 되도록 배열한다.(나) $1$끼리는 서로 이웃하지 않도록 배열한다. 예를 들어 $20200, \; 12201$ 은 조건을 만족시키는 자연수이고 $11020$ 은 조건을 만족시키는 않는 자연수이다. 만들 수 있는 모든 자연수의 개수는? ① $88$ ② $92$ ③ $96$ ④ $100$ ⑤ $104$ 정답 ⑤
합의 법칙, 곱의 법칙 순열 가끔 학생들이 이런 질문을 합니다. 공식대로라면 \(_n {\rm P} _0 =\dfrac{n!}{(n-0)!}=1\) 인데, 왜죠? \(n\) 개 중에서 \(0\) 개를 뽑아 일렬로 나열하겠다는 뜻인데, 뽑지도 않고 어떻게 나열한다는 뜻입니까? 그러면 이렇게 대답을 해 줍니다. 아무짓도 안하고 가만히 내버려 두는 방법 \(1\) 가지가 있는 것이다. ㅋㅋ 지금도 아무짓도 안하고 있지만 더 격렬하게 아무짓도 안하고 싶은 \(1\) 가지라고 생각하시면 속이 편할겁니다. 이웃해야 하는 순열 , 이웃하면 안되는 순열 원순열 원순열 심화 - 다각형 순열 중복순열 영상의 맨 마지막에 지금까지 중복 조합에 대해서 알아봤다고 이야기를 했는데, 중복 순열을 알아본 것입니다. 늘 생각하지만 ..
\(\rm A,\; B,\; C,\; D, \; E, \;F\) 가 각각 적힌 \(6\) 개의 상자가 있다. 이들 상자에 서로 다른 \(10\) 개의 공을 임의로 넣을 때, \(\rm A,\; B,\; C\) 세 상자에 들어가는 공의 개수의 합이 \(4\) 일 확률은? (단, 각 상자에 들어가는 공의 개수에는 제한이 없다.) ① \(\dfrac{45}{256}\) ② \(\dfrac{105}{512}\) ③ \(\dfrac{15}{64}\) ④ \(\dfrac{135}{512}\) ⑤ \(\dfrac{75}{256}\) 정답 ②
다섯 개의 숫자 \(0,\;1,\;2,\;3,\;4\) 를 중복 사용하여 만들 수 있는 네 자리의 자연수를 \(a_1 a_2 a_3 a_4\) 라 한다. 예를 들면, \(1230\) 인 경우 \(a_1 =1, \; a_2 = 2, \; a_3 = 3, \; a_4 =0\) 이다. 이와 같이 네 자리 자연수 \(a_1 a_2 a_3 a_4\) 가 \(a_1
위 표를 꼼꼼히 살펴보면 4가지의 차이점을 알 수 있습니다. 혹시 궁금한 점이 있으시면 댓글 남겨주세요..