일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
- 적분과 통계
- 여러 가지 수열
- 접선의 방정식
- 함수의 극한
- 이차곡선
- 적분
- 함수의 그래프와 미분
- 함수의 연속
- 기하와 벡터
- 수학질문답변
- 수열
- 정적분
- 행렬
- 수만휘 교과서
- 경우의 수
- 수학1
- 미적분과 통계기본
- 수악중독
- 수학질문
- 수열의 극한
- 도형과 무한등비급수
- 미분
- 수능저격
- 로그함수의 그래프
- 이정근
- 행렬과 그래프
- 심화미적
- 중복조합
- 수학2
- 확률
- Today
- Total
목록중복조합 (48)
수악중독
개념정리 1. 원순열 2. 다각형 순열 3. 중복순열 4. 같은 것이 있는 순열 5. 중복조합 6. 중복조합 예제풀이 7. 이항정리 8. 이항계수의 성질 9. 이항계수의 성질 예제풀이 10. (보너스) $(1+x)^{2n}$ 에서 $x^n$ 의 계수 11. (보너스) 이항계수의 성질 심화 (1) 12. (보너스) 이항계수의 성질 심화 (2) 13. (보너스) 이항계수의 성질 심화 (3) 유형정리 1. 경우의 수 2. 원순열 3. 중복순열 4. 같은 것이 있는 순열 5. 최단 거리 6. 중복조합 7. 중복조합-나열 8. 중복조합-분배 9. 중복조합-방정식 10. 중복조합-함수의 개수 11. 이항정리 12. 이항계수의 성질 다음
자연수 $n$ 에 대하여 $2a+2b+c+d=2n$ 을 만족시키는 음이 아닌 정수 $a, \; b, \; c, \; d$ 의 모든 순서쌍 $(a, \; b, \; c, \; d)$ 의 개수를 $a_n$ 이라 하자. 다음은 $\sum \limits_{n=1}^8 a_n$ 의 값을 구하는 과정이다. 음이 아닌 정수 $a, \; b, \; c, \; d$ 가 $2a+2b+c+d=2n$ 을 만족시키려면 음이 아닌 정수 $k$ 에 대하여 $c+d=2k$ 이어야 한다. $c+d=2k$ 인 경우는 (1) 음이 아닌 정수 $k_1, \; k_2$ 에 대하여 $c=2k_1, \; d=2k_2$ 인 경우이거나 (2) 음이 아닌 정수 $k_3, \; k_4$ 에 대하여 $c=2k_3+1, \; d=2k_4 +1$ 인 경우이..
다음 조건을 만족시키는 자연수 $a, \; b, \; c, \; d$ 의 모든 순서쌍 $(a, \; b, \; c, \; d)$ 의 개수는? (가) $a+b+c+d=12$(나) 좌표평면에서 두 점 $(a, \; b), \; (c, \; d)$ 는 서로 다른 점이며, 두 점 중 어떠한 점도 직선 $ y=2x$ 위에 있지 않다. ① $125$ ② $134$ ③ $143$ ④ $152$ ⑤ $161$ 정답 ②
두 종류의 카드 $\boxed{\rm A}, \; \boxed{\rm B}$ 가 $7$ 장씩 있다. 이 $14$ 장의 카드 중에서 $7$ 장의 카드를 택하여 일렬로 나열할 때, ' $\boxed{\rm A} \boxed{\rm B}$ ' 가 이 순서대로 연속하여 놓인 것이 한 번만 나타나도록 카드를 나열하는 경우의 수는? (단, 같은 종류의 카드는 서로 구별하지 않는다.) ① $55$ ② $56$ ③ $57$ ④ $58$ ⑤ $59$ 정답 ②
사과, 배, 귤 세 종류의 과일이 각각 $2$ 개씩 있다. 이 $6$ 개의 과일 중 $4$ 개를 선택하여 $2$ 명의 학생에게 남김없이 나누어 주는 경우의 수를 구하시오. (단, 같은 종류의 과일은 서로 구별하지 않고, 과일을 한 개도 받지 못하는 학생은 없다.) 정답 $51$
다음은 $n$ 명의 사람이 각자 세 상자 $\rm A, \; B, \; C$ 중 $2$개의 상자를 선택하여 각 상자에 공을 하나씩 넣을 때, 세 상자에 서로 다른 개수의 공이 들어가는 경우의 수를 구하는 과정이다. (단, $n$ 은 $6$의 배수인 자연수이고, 공은 구별하지 않는다.) 세 상자에 서로 다른 개수의 공이 들어가는 경우는 '(i) 세 상자에 공이 들어가는 모든 경우' 에서 '(ii) 세 상자에 모두 같은 개수의 공이 들어가는 경우'와 '(iii) 세 상자 중 두 상자에만 같은 개수의 공이 들어가는 경우'를 제외하면 된다. (i) 의 경우:$n$ 명의 사람이 각자 세 상자 중 공을 넣을 두 상자를 선택하는 경우의 수는 $n$ 명의 사람이 각자 공을 넣지 않을 한 상자를 선택하는 경우의 수와 같..
집합 $X=\{ x \; |\; x$ 는 $5$ 이하의 자연수$\}$ 에서 집합 $Y=\{y \; | \;y$ 는 $25$ 이하의 자연수$\}$ 로의 함수 중에서 다음 조건을 만족시키는 함수 $f$ 의 개수는? $4$ 이하의 모든 자연수 $n$ 에 대하여 $f(n+1) \le f(n)-2n$ 이 성립한다. ① $124$ ② $125$ ③ $126$ ④ $127$ ⑤ $128$ 정답 ③
자연수 $n$ 에 대하여 $0$ 부터 $n$ 까지의 정수가 하나씩 적힌 $(n+1)$ 개의 공이 들어 있는 상자가 있다. 이 상자에서 한 개의 공을 꺼내어 공에 적힌 수를 확인하고 다시 넣는 과정을 $5$ 번 반복할 때, 확인한 $5$ 개의 수가 다음 조건을 만족시키는 경우의 수를 $a_n$ 이라 하자. (가) 꺼낸 공에 적힌 수는 먼저 꺼낸 공에 적힌 수보다 작지 않다.(나) 세 번째 꺼낸 공에 적힌 수는 첫 번째 꺼낸 공에 적힌 수보다 $1$ 이 더 크다. $\sum \limits_{n=1}^{18} \dfrac{a_n}{n+2}$ 의 값을 구하시오. 정답 $760$
$1$부터 $15$까지의 자연수가 각각 하나씩 적혀 있는 정육면체 모양의 검은 블록 $6$ 개와 흰 블록 $9$ 개가 있다. 이 $15$ 개의 블록을 일렬로 빈틈없이 늘어 놓을 때, 색이 달리지는 곳의 개수를 $a$ 라 하자. 예를 들어, 그림과 같이 $15$ 개의 블록을 일렬로 빈틈없이 늘어 놓은 경우 $a=5$ 이다. 이와 같이 $15$ 개의 블록을 일렬로 빈틈없이 늘어 놓는 모든 경우에 대하여 $a$ 값의 합은 $n \times 14!$ 이다. 자연수 $n$ 의 값은? ① $100$ ② $104$ ③ $108$ ④ $112$ ⑤ $116$ 정답 ③