일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
- 기하와 벡터
- 행렬
- 적분
- 수열
- 정적분
- 접선의 방정식
- 심화미적
- 이정근
- 여러 가지 수열
- 행렬과 그래프
- 수학질문답변
- 미분
- 함수의 극한
- 함수의 그래프와 미분
- 경우의 수
- 수학1
- 수악중독
- 함수의 연속
- 적분과 통계
- 미적분과 통계기본
- 이차곡선
- 중복조합
- 수학2
- 수학질문
- 수열의 극한
- 확률
- 로그함수의 그래프
- 도형과 무한등비급수
- 수능저격
- 수만휘 교과서
- Today
- Total
목록(8차) 수학1 질문과 답변 (851)
수악중독
첫째항이 $10$ 인 수열 $\{a_n \}$ 이 모든 자연수 $n$ 에 대하여 $$a_n < a_{n+1} ,\;\; \sum \limits_{k=1}^{n} \left ( a_{k+1} - a_k \right ) ^2 = 2 \left ( 1- \dfrac{1}{9^n} \right ) $$ 을 만족시킬 때, $\lim \limits_{n \to \infty} a_n $ 의 값을 구하시오. 정답 12
자연수 \(a, \; b\) 에 대하여 곡선 \(y=a^{x+1}\) 과 곡선 \(y=b^x\) 이 직선 \(x=t\;\;(t \ge 1)\) 와 만나는 점을 각각 \(\rm P, \; Q\) 라 하자. 다음 조건을 만족시키는 \(a, \;b\) 의 순서쌍 \((a,\;b)\) 의 개수를 구하시오. 예를 들어, \(a=4,\; b=5\) 는 다음 조건을 만족시킨다. (가) \(2 \le a \le 10,\;\; 2\le b \le 10\) (나) \(t \ge 1\) 인 어떤 실수 \(t\) 에 대하여 \(\overline {\rm PQ} \le 10\) 이다. 정답 39
좌표평면 위의 점 \({\rm P}_n \;(n=1, \;2, \;3,\; \cdots)\) 은 다음 규칙을 만족시킨다. (가) 점 \(\rm P_1\) 의 좌표는 \((1, \;1)\) 이다.(나) \(\overline{{\rm P}_n{\rm P}_{n+1}}=1\)(다) 점 \({\rm P}_{n+2}\) 는 점 \({\rm P}_{n+1}\) 을 지나고 직선 \({\rm P}_n {\rm P}_{n+1}\) 에 수직인 직선 위의 점 중 \(\overline{{\rm P_1}{\rm P}_{n+2}}\) 가 최대인 점이다. 수열 \(\{a_n\}\) 은 \(a_1=0,\; a_2=1\) 이고, \[a_n=\overline{{\rm P_1}{\rm P}_n} \;\; (n=3,\;4,\;5,\;\cd..
양의 실수 \(x\) 에 대하여 \(\log x\) 의 가수를 \(f(x)\) 라 하자. 다음 조건을 만족시키는 \(a\) 와 \(n\) 에 대하여 모든 자연수 \(n\) 이 값의 합을 구하시오. (가) \(f(a)=f \left( a^{2n} \right )\)(나) \((n+1) \log a = 3n^2 - 4n +4\) 정답 \(44\)
영행렬이 아닌 두 이차정사각행렬 \(A, \;B\) 가 \[A+B=2E,\;\; B^2+2AB+5A=4E\] 를 만족시킬 때, 에서 옳은 것만을 있는 대로 고른 것은? (단, \(E\) 는 단위행렬이다.) ㄱ. \(AB=BA\)ㄴ. \(B\) 의 역행렬이 존재한다.ㄷ. \(BA^2 +AB^2 = -12E\) ① ㄱ ② ㄷ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ③
그림과 같이 한 변의 길이가 \(3\) 인 정삼각형 \(\rm A_1B_1C_1\) 의 무게중심을 \(\rm A_2\), 점 \(\rm A_2\) 를 지나는 원과 두 변 \(\rm A_1B_1, \; A_1C_1\) 의 접점을 각각 \(\rm B_2, \; C_2\) 라 하자. 호 \(\rm A_2B_2\), 선분 \(\rm B_2B_1\), 선분 \(\rm B_1A_2\) 와 호 \(\rm A_2C_2\), 선분 \(\rm C_2C_1\), 선분 \(\rm C_1 A_2\) 로 둘러싸인 부분의 모양의 도형을 색칠하여 얻은 그림을 \(R_1\) 이라 하자. 그림 \(R_1\) 에서 삼각형 \(\rm A_2B_2C_2\) 의 무게중심을 \(\rm A_3\), 점 \(\rm A_3\) 를 지나는 원과 두 변..
양수 \(x\) 에 대하여 \(\log x\) 의 지표와 가수를 각각 \(f(x), \; g(x)\) 라 하고, \(h(x) = x+5f(x)\) 라 하자. 두 조건 \[f(m) \le f(x),\;\; g(h(m)) \le g(x)\] 를 만족시키는 자연수 \(m\) 의 개수를 \(p(x)\) 라 할 때, \(\sum \limits_{k=1}^{10} p(2k)\) 의 값을 구하시오. 정답 \(65\)
모든 항이 양수인 수열 \(\{a_n\}\) 은 \(a_1 =10\) 이고 \[ (a_{n+1})^{n+1} = \dfrac{a_1 + (a_2)^2 + (a_3)^3 + \cdots + (a_n)^n}{n} \;\; (n \ge 1)\] 을 만족시킨다. 다음을 일반항 \(a_n\) 을 구하는 과정의 일부이다. \(b_n=(a_n)^n\) 이라 하면 \(b_1=10\) 이고 주어진 식으로부터 \(b_{n+1}=\dfrac{b_1 + b_2 + \cdots + b_n}{n} \;\; (n \ge 1)\)이다. \(S_n = \sum \limits_{k=1}^{n} b_k\) 라 하면 \(S_{n+1} = (가) \times S_n\)이다. \(s_1 = 10\), \( S_n = S_1 \times \df..
그림과 같이 한 변의 길이가 \(6\) 인 정삼각형 \(\rm ABC\) 가 있다. 정삼각형 \(\rm ABC\) 의 외심을 \(\rm O\) 라 할 때, 중심이 \(\rm A\) 이고 반지름의 길이가 \(\overline{\rm AO}\) 인 원을 \(O_{\rm A}\) , 중심이 \(\rm B\) 이고 반지름의 길이가 \(\overline{\rm BO}\) 인 원을 \(O_{\rm B}\), 중심이 \(\rm C\) 이고 반지름의 길이가 \(\overline{\rm CO}\) 인 원을 \(O_{\rm C}\) 라 하자. 원 \(O_{\rm A}\) 와 원 \(O_{\rm B}\) 의 내분의 공통부분, 원 \(O_{\rm A}\) 와 원 \(O_{\rm C}\) 의 내부의 공통부분, 원 \(O_{\r..