일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 여러 가지 수열
- 수만휘 교과서
- 도형과 무한등비급수
- 정적분
- 경우의 수
- 함수의 연속
- 수악중독
- 수능저격
- 적분과 통계
- 행렬과 그래프
- 수열
- 함수의 그래프와 미분
- 수학2
- 이정근
- 행렬
- 접선의 방정식
- 수학질문답변
- 수학질문
- 이차곡선
- 함수의 극한
- 수열의 극한
- 로그함수의 그래프
- 적분
- 심화미적
- 미분
- 기하와 벡터
- 확률
- 수학1
- 미적분과 통계기본
- 중복조합
- Today
- Total
목록수학1 (908)
수악중독
그림과 같이 한 변의 길이가 \(8\) 인 정삼각형 \(\rm ABC\) 가 있다. 세 선분 \(\rm AB, \; BC, \; CA\) 의 중점을 각각 \(\rm D, \; E,\; F\) 라 하고 두 정삼각형 \(\rm BED, \; ECF\) 를 그린 후 마름모 \(\rm ADEF\) 에 중심이 \(\rm O\) 인 원을 내접하도록 그린다. 원과 두 선분 \(\rm DE, \; EF\) 의 접점을 각각 \(\rm P, \;Q\) 라 할 떄, 사각형 \(\rm OPEQ\) 를 그리고 색칠하여 얻은 그림을 \(R_1\) 이라 하자.그림 \(R_1\) 에서 새로 그려진 두 개의 정삼각형의 내부에 그림 \(R_1\) 을 얻은 것과 같은 방법으로 두 개의 사각형을 그리고 색칠하여 얻은 그림을 \(R_2\) ..
모든 항이 양수인 수열 \(\{a_n\}\) 은 \(a_1 = \dfrac{1}{4}\) 이고 \[ (n+1)a_n=a_{n+1}(3n-2a_n) \; ( n \ge 1)\] 을 만족시킨다. 다음은 일반항 \(a_n\) 을 구하는 과정이다. 주어진 식의 양변을 \(a_n a_{n+1}\) 로 나누면 \(\dfrac{n+1}{a_{n+1}}=\dfrac{3n-2a_n}{a_n}\)이다. \(b_n=\dfrac{n}{a_n}\) 이라 하면 \(b_{n+1}=3b_n + (가) \)이고, \(b_{n+1}-1=3(b_n-1)\) 이다.\(b_1=4\) 이므로 \(b_n= (나)\) \(b_n = (나) +1\)이다. 그러므로 \(a_n=\dfrac{n}{(나)+1} \; (n\ge 1)\)이다. 위의 (가)에..
좌표평면에서 자연수 \(n\) 에 대하여 그림과 같이 곡선 \(y=x^2\) 과 직선 \(y=\sqrt{n}x\) 가 제1사분면에서 만나는 점을 \({\rm P}_n\) 이라고 하자. 점 \({\rm P}_n\) 을 지나고 직선 \(y=\sqrt{n}x\) 에 수직인 직선이 \(x\) 축, \(y\) 축과 만나는 점을 각각 \({\rm Q}_n {\rm R}_n\) 이라 하자. 삼각형 \(\rm OQ_{\it n}R_{\it n}\) 의 넓이를 \(S_n\) 이라 할 때, \(\sum \limits_{n=1}^{5} \dfrac{2S_n}{\sqrt{n}}\) 의 값은? (단, \(\rm O\) 는 원점이다.) ① \(80\) ② \(85\) ③ \(90\) ④ \(95\) ⑤ \(100\) 정답 ③
지수부등식 \(\left ( 2^x -32 \right ) \left ( \dfrac{1}{3^x} - 27 \right )>0\) 을 만족시키는 모든 정수 \(x\) 의 개수는? ① \(7\) ② \(8\) ③ \(9\) ④ \(10\) ⑤ \(11\) 정답 ①
어떤 앰프에 스피커를 접속 케이블로 연결하여 작동시키면 접속 케이블의 저항과 스피커의 임피던스(스피커에 교류전류가 흐를 때 생기는 저항)에 따라 전송 손실이 생긴다. 접속 케이블의 저항을 \(R\), 스피커의 임피던스를 \(r\), 전송 손실을 \(L\) 이라 하면 다음과 같은 관계식이 성립한다고 한다. \[L=10 \log \left ( 1+\dfrac{2R}{r} \right )\] (단, 전송 손실의 단위는 \(\rm dB\), 접속 케이블의 저항과 스피커의 임피던스의 단위는 \(\omega\) 이다.)이 앰프에 임피던스가 \(8\) 인 스피커를 저항이 \(5\) 인 접속 케이블로 연결하여 작동시켰을 때의 전송 손실은 저항이 \(a\) 인 접속 케이블로 교체하여 작동시켰을 때의 전송 손실의 \(2\..
자연수 \(n\) 에 대하여 그림과 같이 두 점 \({\rm A}_n (n, \;0), \; {\rm B}_n (0, \; n+1) \) 이 있다. 삼각형 \(\rm A_{\it n}B_{\it n}\) 에 내접하는 원의 중심을 \({\rm C}_n\) 이라 하고, 두 점 \(\rm B_{\it n}\) 과 \(\rm C_{\it n}\) 을 지나는 직선이 \(x\) 축과 만나는 점을 \(\rm P_{\it n}\) 이라 하자. \(\lim \limits_{n \to \infty} \dfrac{\overline{\rm OP_{\it n}}}{n}\) 의 값은? (단, \(\rm O\) 는 원점이다.)① \(\dfrac{\sqrt{2}-1}{2}\) ② \(\sqrt{2}-1\) ③ \(2-\sqrt{2}..
그림과 같이 한 변의 길이가 \(2\) 인 정사각형 모양의 종이 \(\rm ABCD\) 에서 각 변의 중점을 각각 \(\rm A_1, \; B_1, \; C_1, \; D_1\) 이라 하고 \(\overline{\rm A_1 B_1}, \; \overline{\rm B_1C_1}, \; \overline{\rm C_1D_1}, \; \overline{\rm D_1A_1}\) 을 접는 선으로 하여 네 점 \(\rm A, \; B, \; C, \; D\) 가 한 점에서 만나도록 접은 모양을 \(S_1\) 이라 하자.\(S_1\) 에서 정사각형 \(\rm A_1 B_1 C_1 D_1\) 의 각 변의 중점을 각각 \(\rm A_2, \; B_2, \; C_2, \; D_2\) 이라 하고 \(\overline{\..
수열 \(\{a_n\}\) 이 다음 조건을 만족시킨다. (가) \(a_1=36\)(나) \(a_{n+1}-a_n=2n-14 \; (n \ge 1)\) \(a_n=6\) 일 때, 모든 \(n\) 의 값의 합을 구하시오. 정답 \(15\)
자연수 \(n\) 에 대하여 그림과 같이 세 곡선 \(y=\log _2 x +1\), \(y=\log _2 x\), \(y=\log _2 \left ( x-4^n \right )\) 이 직선 \(y=n\) 과 만나는 세 점을 각각 \({\rm A}_n, \;{\rm B}_n, \; {\rm C}_n\) 이라 하자. 두 삼각형 \(\rm A_{\it n} OB_{\it n} , \; B_{\it n}OC_{\it n}\) 의 넓이를 각각 \(S_n,\; T_n\) 이라 할 때, \(\dfrac{T_n}{S_n} = 64\) 를 만족시키는 \(n\) 의 값을 구하시오. (단, \(\rm O\) 는 원점이다.) 정답 \(5\)