일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- 행렬
- 심화미적
- 함수의 연속
- 도형과 무한등비급수
- 행렬과 그래프
- 접선의 방정식
- 정적분
- 적분
- 수학2
- 수학1
- 함수의 극한
- 적분과 통계
- 수악중독
- 로그함수의 그래프
- 수열의 극한
- 확률
- 기하와 벡터
- 미분
- 여러 가지 수열
- 미적분과 통계기본
- 함수의 그래프와 미분
- 수능저격
- 수학질문
- 수만휘 교과서
- 중복조합
- 수열
- 수학질문답변
- 경우의 수
- 이차곡선
- 이정근
- Today
- Total
목록수학1 (908)
수악중독
\(x \ge 1\) 일 때, \(\log x\) 의 지표와 가수를 각각 \(f(x), \; g(x)\) 라 하자. 좌표평면에서 자연수 \(n\) 에 대하여 함수 \(y=\{f(x)+1\}g(x)\) 의 그래프와 직선 \(y=n\) 이 만나는 점의 \(x\) 좌표 중 가장 작은 값을 \(a_n\) 이라 할 때, \(\sum \limits_{n=1}^{10} \left ( \log a_n + \dfrac{1}{n+1} \right ) \) 의 값을 구하시오. 정답 \(65\)
두 이차정사각행렬 \(A, \; B\) 가 \[AB+E=A^2,\;\; AB^3 - BA^3 = 6E\] 를 만족시킬 때, 에서 옳은 것만을 있는 대로 고른 것은? (단, \(E\) 는 단위행렬이다.) ㄱ. \(A\) 의 역행렬이 존재한다.ㄴ. \(AB=BA\)ㄷ.\(A^2 +B^2 = 4E\) ① ㄱ ② ㄷ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ③
수열 \(\{a_n\}\) 에 대하여 \(S_n = \sum \limits_{k=1}^{n} a_k\) 라 할 때, \[ 2S_n=3a_n-4n+3\; (n \ge 1)\] 을 만족시킨다. 다음은 일반항 \(a_n\) 을 구하는 과정이다. \(2S_n=3a_n-4n+3\; \cdots\cdots\; ㉠\)에서 \(n=1\) 일 때, \(2S_1=3a_1-1\) 이므로 \(a_1=1\) 이다.\(2S_{n+1}=3a_{n+1}-4(n+1)+3 \; \cdots\cdots \;㉡\)㉡에서 ㉠을 뺀 식으로부터 \(a_{n+1}=3a_n+ \) (가) 이다. 수열 \(\{a_n+2\}\) 가 등비수열이므로일반항 \(a_n\) 을 구하면\(a_n=\) (나) \((n\ge 1)\)이다. 위의 (가)에 알맞은 수를..
그림과 같이 중심각의 크기가 \(\dfrac{\pi}{3}\) 이고 반지름의 길이가 \(6\) 인 부채꼴 \(\rm OAB\) 가 있다. 부채꼴 \(\rm OAB\) 에 내접하는 원 \(O_1\) 이 두 선분 \(\rm OA, \; OB\), 호 \(\rm AB\) 와 만나는 점을 각각 \(\rm A_1, \; B_1, \; C_1\) 이라 하고, 부채꼴 \(\rm OA_1B_1\) 의 외부와 삼각형 \(\rm A_1C_1B_1\) 의 내부의 공통부분의 넓이를 \(S_1\) 이라 하자.부채꼴 \(\rm OA_1B_1\) 에 내접하는 원 \(O_2\) 가 두 선분 \(\rm OA_1, \; OB_1\), 호 \(\rm A_1B_1\) 와 만나는 점을 각각 \(\rm A_2, \; B_2, \; C_2\) ..
수열 \(\{a_n\}\) 이 \(a_1=3\) 이고 \[{a_{n + 1}} = \left\{ {\begin{array}{ll}{\dfrac{{{a_n}}}{2}}&{({a_n} 은 \; 짝수\;)}\\{\dfrac{{{a_n} + 93}}{2}}&{\left( {{a_n}은 \; 홀수\;} \right)} \end{array}} \right.\] 가 성립한다. \(a_k =3\) 을 만족시키는 \(50\) 이하의 모든 자연수 \(k\) 의 값의 합을 구하시오. 정답 \(235\)
양수 \(x\) 에 대하여 \(\log x\) 의 지표와 가수를 각각 \(f(x), \; g(x)\) 라 하자. \(\{ f(x) \}^2 +3g(x)=3\) 의 값이 \(3\) 이 되도록 하는 모든 \(x\) 값의 곱은 \(10^{\frac{q}{p}}\) 이다. \(10(p+q)\) 의 값을 구하시오. (단, \(p, \;q\) 는 서로소인 자연수이다.) 정답 \(70\)
수열 \(\{a_n\}\) 은 \(15\) 와 서로소인 자연수를 작은 수부터 차례대로 모두 나열하여 만든 것이다. 예를 들면 \(a_2 =2 , \;a_4=7\) 이다. \(\sum \limits_{n=1}^{16} a_n\) 의 값은? ① \(240\) ② \(280\) ③ \(320\) ④ \(360\) ⑤ \(400\) 정답 ②
\( \log_2 \left ( -x^2 +ax +4 \right ) \) 의 값이 자연수가 되도록 하는 실수 \(x\) 의 개수가 \(6\) 일 때, 모든 자연수 \(a\) 의 값의 곱을 구하시오. 정답 \(30\)
집합 \(U= \{ x \; |\; x \) 는 \(30 \) 이하의 자연 \( \} \)의 부분집합 \(A=\{ a_1 , \; a_2 , \; a_3 ,\; \cdots, \; a_{15} \}\) 가 다음 조건을 만족시킨다. (가) 집합 \(A\) 의 임의의 두 원소 \(a_i, \; a_j \;(i \ne j)\) 에 대하여 \(a_i +a_j \ne 31\) (나) \(\sum \limits_{i=1}^{15} a_i =264\) \(\dfrac{1}{31} \sum \limits_{i=1}^{15} a_i ^2\) 의 값을 구하시오. 정답 \(184\)
함수 \(f(x)\) 가 닫힌 구간 \([0, \;2]\) 에서 \( f(x)= |x-1|\) 이고, 모든 실수 \(x\) 에 대하여 \(f(x)=f(x+2)\) 를 만족시킬 때, 함수 \(g(x)\) 를 \[g(x)=x+f(x)\] 라 하자. 자연수 \(n\) 에 대하여 다음 조건을 만족시키는 두 자연수 \(a, \;b\) 의 순서쌍 \((a, \;b)\) 의 개수를 \(a_n\) 이라 할 때, \(\sum \limits_{n=1}^{15} a_n\) 의 값을 구하시오. (가) \(n \leq a \leq n\) (나) \(0