일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
- 함수의 극한
- 정적분
- 수학질문답변
- 수열의 극한
- 심화미적
- 로그함수의 그래프
- 수학질문
- 도형과 무한등비급수
- 행렬과 그래프
- 여러 가지 수열
- 수악중독
- 미적분과 통계기본
- 수학2
- 수학1
- 수열
- 행렬
- 접선의 방정식
- 적분과 통계
- 수만휘 교과서
- 확률
- 수능저격
- 중복조합
- 함수의 연속
- 경우의 수
- 함수의 그래프와 미분
- 이정근
- 기하와 벡터
- 미분
- 적분
- 이차곡선
- Today
- Total
목록2024/11 (43)
수악중독
수열 $\{a_n\}$ 에 대하여 $\lim \limits_{n to \infty} \dfrac{na_n}{n^2+3}=1$ 일 때, $\lim \limits_{n \to \infty} \left ( \sqrt{a_n^2+n}-a_n \right )$ 의 값은? ① $\dfrac{1}{3}$ ② $\dfrac{1}{2}$ ③ $1$ ④ $2$ ⑤ $3$ 더보기정답 ②
그림과 같이 곡선 $y=\sqrt{\dfrac{x+1}{x(x+\ln x)}}$ 과 $x$ 축 및 두 직선 $x=1, \; x=e$ 로 둘러싸인 부분을 밑면으로 하는 입체도형이 있다. 이 입체도형을 $x$ 축에 수직인 평면으로 자른 단면이 모두 정사각형일 때, 이 입체도형의 부피는? ① $\ln(e+1)$ ② $\ln(e+2)$ ③ $\ln(e+3)$ ④ $\ln(2e+1)$ ⑤ $\ln(2e+2)$ 더보기정답 ①
최고차항의 계수가 $1$ 인 삼차함수 $f(x)$ 에 대하여 함수 $g(x)$ 를 $$g(x)=f \left (e^x \right ) +e^x$$ 이라 하자. 곡선 $y=g(x)$ 위의 점 $(0, \; g(0))$ 에서의 접선이 $x$ 축이고 함수 $g(x)$ 가 역함수 $h(x)$ 를 가질 때, $h'(8)$ 의 값은? ① $\dfrac{1}{36}$ ② $\dfrac{1}{18}$ ③ $\dfrac{1}{12}$ ④ $\dfrac{1}{9}$ ⑤ $\dfrac{5}{36}$ 더보기정답 ①
실수 전체의 집합에서 미분가능한 함수 $f(x)$ 의 도함수 $f'(x)$ 가 $$f'(x)=-x+e^{1-x^2}$$ 이다. 양수 $t$ 에 대하여 곡선 $y=f(x)$ 위의 점 $(t, \; f(t))$ 에서의 접선과 곡선 $y=f(x)$ 및 $y$ 축으로 둘러싸인 부분의 넓이를 $g(t)$ 라 하자. $g(1)+g'(1)$ 의 값은? ① $\dfrac{1}{2}e+\dfrac{1}{2}$ ② $\dfrac{1}{2}e+\dfrac{2}{3}$ ③ $\dfrac{1}{2}e+\dfrac{5}{6}$ ④ $\dfrac{2}{3}e+\dfrac{1}{2}$ ⑤ $\dfrac{2}{3}e+\dfrac{2}{3}$ 더보기정답 ②
등비수열 $\{a_n\}$ 이 $$\sum \limits_{n=1}^\infty \left (|a_n|+a_n \right ) = \dfrac{40}{3}, \quad \sum \limits_{n=1}^\infty \left (|a_n | - a_n \right )=\dfrac{20}{3}$$ 을 만족시킨다. 부등식 $$\lim \limits_{n \to \infty} \sum \limits_{k=1}^{2n} \left ((-1)^{\frac{k(k+1)}{2}} \times a_{m+k} \right ) > \dfrac{1}{700}$$ 을 만족시키는 모든 자연수 $m$ 의 값의 합을 구하시오. 더보기정답 $25$
두 상수 $a \; (1 \le a \le 2)$, $b$ 에 대하여 함수 $f(x)=\sin (ax+b+\sin x)$ 가 다음 조건을 만족시킨다. (가) $f(0)=0, \; f(2\pi)=2\pi a+b$(나) $f'(0)=f'(t)$ 인 양수 $t$ 의 최솟값은 $4\pi$ 이다. 함수 $f(x)$ 가 $x=\alpha$ 에서 극대인 $\alpha$ 의 값 중 열린구간 $(0, \; 4\pi)$ 에 속하는 모든 값의 집합을 $A$ 라 하자. 집합 $A$ 의 원소의 개수를 $n$, 집합 $A$ 의 원소 중 가장 작은 값을 $\alpha_1$ 이라 하면, $n\alpha_1 - ab=\dfrac{q}{p}\pi$ 이다. $p+q$ 의 값을 구하시오. (단, $p$ 와 $q$ 는 서로소인 자연수이다...
꼭짓점의 좌표가 $(1, \; 0)$ 이고, 준선이 $x=-1$ 인 포물선이 점 $(3, \; a)$ 를 지날 때, 양수 $a$ 의 값은? ① $1$ ② $2$ ③ $3$ ④ $4$ ⑤ $5$ 더보기정답 ④
좌표공간의 두 점 $\mathrm{A}(a, \; b, \; 6)$, $\mathrm{B}(-4, \; -2, \; c)$ 에 대하여 선분 $\mathrm{AB}$ 를 $3:2$ 로 내분하는 점이 $z$ 축 위에 있고, 선분 $\mathrm{AB}$ 를 $3:2$ 로 외분하는 점이 $xy$ 평면 위에 있을 때, $a+b+c$ 의 값은? ① $11$ ② $12$ ③ $13$ ④ $14$ ⑤ $15$ 더보기정답 ③
자연수 $n \; (n \ge 2)$ 에 대하여 직선 $x=\dfrac{1}{n}$ 이 두 타원 $$C_1 \; : \; \dfrac{x^2}{2}+y^2=1, \quad C_2 \; : \; 2x^2+\dfrac{y^2}{2}=1$$ 과 만나는 제$1$사분면 위의 점을 각각 $\mathrm{P, \; Q}$ 라 하자. 타원 $C_1$ 위의 점 $\mathrm{P}$ 에서의 접선의 $x$ 절편을 $\alpha$, 타원 $C_2$ 위의 점 $\mathrm{Q}$ 에서의 접선의 $x$ 절편을 $\beta$ 라 할 때, $6 \le \alpha-\beta \le 15$ 가 되도록 하는 모든 $n$ 의 개수는? ① $7$ ② $9$ ③ $11$ ④ $13$ ..
그림과 같이 $\overline{\mathrm{AB}}=6$, $\overline{\mathrm{BC}}=4\sqrt{5}$ 인 사면체 $\mathrm{ABCD}$ 에 대하여 선분 $\mathrm{BC}$ 의 중점을 $\mathrm{M}$ 이라 하자. 삼각형 $\mathrm{AMD}$ 가 정삼각형이고 직선 $\mathrm{BC}$ 는 평면 $\mathrm{AMD}$ 와 수직일 때, 삼각형 $\mathrm{ACD}$ 에 내접하는 원의 평면 $\mathrm{BCD}$ 위로의 정사영의 넓이는? ① $\dfrac{\sqrt{10}}{4}\pi$ ② $\dfrac{\sqrt{10}}{6}\pi$ ③ $\dfrac{\sqrt{10}}{8}\pi$ ④ $\dfrac{..