일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- 수만휘 교과서
- 미분
- 여러 가지 수열
- 함수의 연속
- 행렬
- 로그함수의 그래프
- 수학1
- 이차곡선
- 수능저격
- 수열의 극한
- 수학2
- 함수의 그래프와 미분
- 기하와 벡터
- 수열
- 심화미적
- 접선의 방정식
- 적분
- 도형과 무한등비급수
- 정적분
- 확률
- 중복조합
- 수학질문답변
- 미적분과 통계기본
- 적분과 통계
- 행렬과 그래프
- 수학질문
- 경우의 수
- 수악중독
- 이정근
- 함수의 극한
- Today
- Total
목록(9차) 미적분 II 문제풀이 (361)
수악중독
양수 $t$ 에 대하여 구간 $[1, \; \infty)$ 에서 정의된 함수 $f(x)$ 가 $$f(x) = \left \{ \begin{array}{ll} \ln x & (1 \le x
실수 $t$ 에 대하여 함수 $f(x)$ 를 $$f(x)=\left \{ \begin{array}{cc} 1-|x-t| & (|x-t|\le 1) \\ 0 & (|x-t|>1) \end{array}\right .$$ 이라 할 때, 어떤 홀수 $k$ 에 대하여 함수 $$g(t)= \displaystyle \int_k^{k+8} f(x) \cos(\pi x)\; dx $$ 가 다음 조건을 만족시킨다. 함수 $g(t)$ 가 $t=\alpha$ 에서 극소이고 $g(\alpha)
그림과 같이 길이가 $2$ 인 선분 $\rm AB$ 를 지름으로 하는 반원 모양의 색종이가 있다. 호 $\rm AB$ 위의 점 $\rm P$ 에 대하여 두 점 $\rm A, \; P$ 를 연결하는 선을 접는 선으로 하여 색종이를 접는다. $\angle {\rm PAB} = \theta$ 일 때, 포개어지는 부분의 넓이를 $S(\theta)$ 라 하자. $\theta = \alpha$ 에서 $S(\theta)$ 가 최댓값을 갖는다고 할 때, $\cos 2\alpha$ 의 값은? (단, $0 < \theta < \dfrac{\pi}{4}$) ① $\dfrac{-2+\sqrt{17}}{8}$ ② $\dfrac{-1+\sqrt{17}}{8}$ ③ $\dfrac{\sqrt{17}}{8}$ ④ $\dfrac{1+\..
그림과 같이 길이가 2 인 선분 $\rm AB$ 위의 점 $\rm P$ 를 지나고 선분 $\rm AB$ 에 수직인 직선이 선분 $\rm AB$ 를 지름으로 하는 반원과 만나는 점을 $\rm Q$ 라 하자. $\overline{\rm AP}=x$ 라 할 때, $S(x)$ 를 다음과 같이 정의한다. $0
$x \ge \dfrac{1}{100}$ 인 실수 $x$ 에 대하여 $\log x $ 의 가수를 $f(x)$ 라 하자. 다음 조건을 만족시키는 두 실수 $a, \; b$ 의 순서쌍 $(a, \; b)$ 를 좌표평면에 나타낸 영역을 $R$ 라 하자. (가) $a10$ 이다.(나) 함수 $y=9f(x)$ 의 그래프와 직선 $y=ax+b$ 가 한 점에서만 만난다. 영역 $R$ 에 속하는 점 $(a, \;b)$ 에 대하여 $(a+20)^2+b^2$ 의 최솟값은 $100 \times \dfrac{q}{p}$ 이다. $p+q$ 의 값을 구하시오. (단, $p$ 와 $q$ 는 서로소인 자연수이다.) 정답 $222$
좌표평면에서 자연수 $n$ 에 대하여 다음 조건을 만족시키는 삼각형 $\rm OAB$ 의 개수를 $f(n)$ 이라 할 때, $f(1)+f(2)+f(3)$ 의 값을 구하시오. (단, $\rm O$ 는 원점이다.) (가) 점 $\rm A$ 의 좌표는 $\left (-2, \; 3^n \right )$ 이다.(나) 점 $\rm B$ 의 좌표를 $(a, \; b)$ 라 할 때, $a$ 와 $b$ 는 자연수이고 $b \le \log_2 a$ 를 만족시킨다.(다) 삼각형 $\rm OAB$ 의 넓이는 $50$ 이하이다. 정답 $120$
$x>0$ 에서 정의된 미분가능한 두 함수 $f(x), \; g(x)$ 가 다음 조건을 만족시킨다. (가) $xf'(x)-g(x)=0, \;\; f(x)-xg'(x)=0$(나) $f(x) > |g(x)|$(다) $f(1)=3, \;\; g(1)=2$ 함수 $h(x)$ 를 $h(x)=\{f(x)\}^2+\{g(x)\}^2$ 이라 하면, 함수 $h(x)$ 는 $x=\alpha$ 에서 최솟값 $m$ 을 갖는다. $(\alpha m)^2$ 의 값을 구하시오. 정답 $5$
수열 $\{a_n\}$ 이 $$a_1=-1, \;\; a_n=2-\dfrac{1}{2^{n-2}}\;\; (n\ge 2)$$ 이다. 구간 $[-1, \; 2)$ 에서 정의된 함수 $f(x)$ 가 모든 자연수 $n$ 에 대하여 $$f(x)=\sin \left ( 2^n \pi x \right ) \;\; (a_n \le x \le a_{n+1})$$ 이다. $-1
함수 $f(x)=\ln \left ( e^x +1 \right ) + 2e^x$ 에 대하여 이차함수 $g(x)$ 와 실수 $k$ 는 다음 조건을 만족시킨다. 함수 $h(x)=|g(x)-f(x-k)|$ 는 $x=k$ 에서 최솟값 $g(k)$ 를 갖고, 닫힌 구간 $[k-1, \; k+1]$ 에서 최댓값 $2e+\ln \left ( \dfrac{1+e}{\sqrt{2}} \right )$ 를 갖는다. $g' \left ( k-\dfrac{1}{2} \right )$ 의 값을 구하시오. (단, $\dfrac{5}{2} < e < 3$ 이다.) 정답 $6$