일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- 접선의 방정식
- 이정근
- 수악중독
- 미분
- 미적분과 통계기본
- 수만휘 교과서
- 중복조합
- 확률
- 수학2
- 수열의 극한
- 심화미적
- 수학질문
- 수열
- 경우의 수
- 행렬
- 도형과 무한등비급수
- 수학1
- 함수의 극한
- 여러 가지 수열
- 적분과 통계
- 정적분
- 함수의 연속
- 수학질문답변
- 기하와 벡터
- 로그함수의 그래프
- 수능저격
- 이차곡선
- 함수의 그래프와 미분
- 적분
- 행렬과 그래프
- Today
- Total
목록(9차) 미적분 II 문제풀이 (361)
수악중독
좌표평면에서 함수 $f(x)=(\ln x)^2- \ln x$ 에 대하여 원점과 곡선 $y=f(x)$ 위의 점 $(t, \; f(t))$ 를 이은 직선이 이 곡선과 만나는 점의 개수를 $g(t)$ 라 하자. 함수 $g(t)$ 가 $t=a_1$, $ t=a_2$, $t=a_3$, $t=a_4$, $t=a_5$ $(a_1 < a_2
다음은 $x$ 의 값의 범위에 따른 함수 $f(x)$ 의 증감표의 일부이다. $x$ $x=4$ $4
단면의 넓이가 $120 \left (\rm m^2 \right)$ 로 일정한 원통형의 물탱크에 물이 $5(\rm m)$ 까지 차 있다. 이 물탱크의 바닥 중앙에 있는 넓이 $\dfrac{1}{5} \left (\rm m^2 \right)$ 인 구멍으로 물이 빠지고 있다. 물탱크의 바닥으로부터 수면까지의 높이가 $y(\rm m)$ 일 때, 빠져나가는 물의 속력 $v(\rm m/s)$ 는 $v=\sqrt{20y}$ 로 주어진다고 하자. 다음은 이 식을 이용해서 물의 높이가 $5(\rm m)$ 에서 $\dfrac{5}{4}(\rm m)$ 로 줄어들 때가지 걸리는 시간을 계산한 것이다.$v$ 와 $y$ 가 시간에 따라 변하므로 $v$ 와 $y$ 의 관계식 $v=\sqrt{20y}$ 를 $t$ 에 관하여 미분하여..
함수 $f(x)=\dfrac{1}{e}x^4-ex^2+c$ ($c$ 는 상수)와 실수 $a$ 에 대하여 함수 $g(x)$를 $g(x)=\displaystyle \int_a^x f(t)\; dt$ 라 하자. 함수 $y=g(x)$ 의 그래프가 $x$ 축과 서로 다른 두 점에서만 만나도록 하는 모든 $a$ 의 값을 작은 수부터 크기순으로 나열하면 $\alpha_1, \; \alpha_2, \; \cdots, \; \alpha_n$ ($n$ 은 자연수) 이다. $a=\alpha_n$ 일 때, 함수 $g(x)$ 와 상수 $k$ 는 다음 조건을 만족시킨다. (가) 함수 $g(x)$ 는 $x=e$ 에서 극솟값을 갖는다.(나) $\displaystyle \int_{\alpha_n}^{\alpha_1} g(x)\; dx..
실수 전체의 집합에서 미분가능한 함수 $f(x)$ 가 다음 조건을 만족시킨다. (단, $a, \; b, \; c$ 는 상수이고, $0
모든 실수에서 미분가능한 두 함수 $f(x), \; g(x)$가 모든 실수 $x$ 에 대하여 다음 조건을 만족한다. (가) $f(x)>0$(나) $\displaystyle \int_0^{\sin \pi x} f(t) \; dt = \int_{\cos \pi x}^{g(4x)} f(t) \; dt$ $\displaystyle \int_0^1 g(x) \; dx = 10$ 일 때, $\displaystyle \int_0^2 \left (x^2-6x+10 \right ) g'(x) \; dx$ 의 값을 구하시오. 정답 $72$
최고차항의 계수가 $1$ 인 다항함수 $f(x)$ 와 양의 실수 $a$ 에 대하여 $x
실수 전체에서 정의된 함수 $f(x)$ 와 $2$차 이하의 다항함수 $g(x)$ 가 다음을 만족시킨다. (가) $f'(x)=f(x)g(x)$ 이다. (단, $f(x) \ne 0$) (나) $\lim \limits_{x \to -1} \dfrac{g(x)}{x+1}>0$ 이고, $g(x)$ 의 최고차항의 계수는 $3$ 이다. (다) 함수 $h(x)= |\;f(x)-t\;|\;\; (t>0)$ 에 대하여 $h(x)$ 가 미분가능하지 않은 점의 개수를 $i(t)$ 이라고 할 때, $i(t) \le 3$ 이고 $i(t)$ 는 $t= \alpha, \; \beta$ 에서만 불연속이다. $\dfrac{\beta}{\alpha}=e^4$ 일 때, $\ln \dfrac{f(3)}{f(2)}$ 의 값을 구하시오. 더보기..
미분가능한 함수 $f(x)$ 에 대하여 함수 $g(x)$ 를 $g(x) = \displaystyle \int_{-x}^x f(t) \; dt$ 라 하자. 두 함수 $f(x)$ 와 $g(x)$ 가 다음 조건을 만족시킨다. (가) $x
정의역이 $\{x \; | \; 0 \le x \le 8 \}$ 이고 다음 조건을 만족시키는 연속함수 $f(x)$ 에 대하여 $\displaystyle \int_0^8 f(x)\; dx$ 의 최댓값은 $p+\dfrac{q}{\ln 2}$ 이다. $p+q$ 의 값을 구하시오. (단, $p, \; q$ 는 자연수이고, $\ln 2$ 는 무리수이다.) (가) $f(0)=1$ 이고 $f(8) \le 100$ 이다. (나) $0 \le k \le 7$ 인 각각의 정수 $k$ 에 대하여 $$f(k+t)=f(k) \;\; (0