일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 적분과 통계
- 적분
- 기하와 벡터
- 수학질문
- 확률
- 심화미적
- 수열
- 이차곡선
- 수열의 극한
- 수학1
- 함수의 극한
- 도형과 무한등비급수
- 행렬
- 여러 가지 수열
- 미적분과 통계기본
- 경우의 수
- 수학2
- 이정근
- 수학질문답변
- 중복조합
- 수만휘 교과서
- 접선의 방정식
- 로그함수의 그래프
- 미분
- 정적분
- 수악중독
- 함수의 연속
- 함수의 그래프와 미분
- 행렬과 그래프
- 수능저격
- Today
- Total
목록(9차) 기하와 벡터 문제 풀이 (323)
수악중독
좌표공간에서 구 \((x-3)^2+(y-2)^2+(z+2)^2=6\) 위를 움직이는 점 \(\rm P\) 가 있다. 점 \(\rm P\) 를 \(x\) 축의 양의 방향으로 \(2\) 만큼 평행이동한 점을 \(\rm Q\) 라 할 때, \(\overrightarrow{\rm OP}\cdot \overrightarrow{\rm OQ}\) 의 값이 최대가 되도록 하는 점 \(\rm P\) 의 좌표는 \((a, \;b,\;c)\) 이다. \(a^2+b^2+c^2\) 의 값은? (단, \(\rm O\) 는 원점이다.) ① \(11\) ② \(19\) ③ \(27\) ④ \(35\) ⑤ \(43\) 정답 ⑤
정의역이 \(\left \{ x | -\dfrac{\pi}{2} < x < \dfrac{\pi}{2} \right \}\) 인 함수 \(f(x)=\dfrac{1}{2} \left | \tan x \right |\) 가 있다. \(y\) 축 위의 점 \({\rm A}(0,\;t)\)와 곡선 \(y=f(x)\) 위의 임의의 두 점 \(\rm P, \;Q\) 에 대하여 항상 \(\overrightarrow{\rm PA}\cdot \overrightarrow{\rm AQ}\leq 0\) 가 성립하도록 하는 실수 \(t\) 의 최댓값은 \(a+b \pi\) 이다. \(80(a-b)\) 의 값을 구하시오. 정답 \(60\)
평면에서 한 점 \(\rm P\) 에서 만나는 두 삼각형 \(\rm ABP, \; CDP\) 가 다음 조건을 만족시킨다. (가) \(\overline{\rm AP}=\overline{\rm BP}=2\sqrt{2}\) (나) \(\overline{\rm CP}=\overline{\rm DP}=2\sqrt{5}\) (다) \(\angle \rm APB=\angle \rm CPD=\dfrac{\pi}{4}\) 두 벡터 \(\overrightarrow{\rm AD}, \; \overrightarrow{\rm BC}\) 에 대하여 \(\overrightarrow{\rm AD} \cdot \overrightarrow{\rm BC}=18\sqrt{2}\) 이다. \(\angle \rm APC=\theta\) 라 할..
중심이 \(\rm O\) 인 원에 내접하는 삼각형 \(\rm ABC\) 가 있다. 선분 \(\rm AB,\;BC,\;CD\) 의 중점을 각각 \(\rm P,\;Q,\;R\) 이라 하고 삼각형 \(\rm ABC\) 의 무게 중심을 \(\rm G\) 라 하자. 원을 포함하는 평면 위의 한 점 \(\rm H\) 가 \[\overrightarrow{\rm AH}\cdot \overrightarrow{\rm BC}=\overrightarrow{\rm BH}\cdot \overrightarrow{\rm CA}=0\] 을 만족시킬 때, 옳은 것만을 에서 있는 대로 고른 것은? ㄱ. \(\overrightarrow{\rm OQ} \cdot \overrightarrow{\rm PR}=0\) ㄴ. \( \overright..
반지름의 길이가 \(2\) 인 구의 중심 \(\rm O\) 를 지나는 평면을 \(\alpha\) 라 하고, 평면 \(\alpha\) 와 이루는 각이 \(45^{\rm o}\) 인 평면을 \(\beta\) 라 하자. 평면 \(\alpha\) 와 구가 만나서 생기는 원을 \(C_1\), 평면 \(\beta\) 와 구가 만나서 생기는 원을 \(C_2\) 라 하자. 원 \(C_2\) 의 중심 \(\rm A\) 와 평면 \(\alpha\) 사이의 거리가 \(\dfrac{\sqrt{6}}{2}\) 일 때, 그림과 같이 다음 조건을 만족하도록 원 \(C_1\) 위에 점 \(\rm P\), 원 \(C_2\) 위에 두 점 \(\rm Q, \;R\) 를 잡는다. (가) \(\angle \rm QAR=90^{\rm o}\)..
\(\overline{\rm AB}=\overline{\rm BC}=\overline{\rm CD}=2\) 이고 \(\overline{\rm AD}=4\) 인 등변사다리꼴 \(\rm ABCD\) 가 있다. 점 \(\rm A\) 는 평면 \(\alpha\) 위의 점이고, 점 \(\rm C\) 에서 평면 \(\alpha\) 에 이르는 거리는 \(3\) 이다. 직선 \(\rm BD\) 와 평면 \(\alpha\) 가 이루는 예각의 크기가 \(30^{\rm o}\) 일 때, 점 \(\rm D\) 에서 평면 \(\alpha\) 에 이르는 거리는 \(a+b\sqrt{3}\) 이다. \(9(a+b)\) 의 값을 구하시오. (단, \(a,\;b\) 는 유리수이다.) 정답 \(24\)
두 평면 \(\alpha, \; \beta\) 의 교선 위에 두 점 \(\rm A, \;B\) 가 있고 \(\overline{\rm AB}=13\) 이다. 평면 \(\alpha\) 위의 점 \(\rm C\) 에 대하여 삼각형 \(\rm ABC\) 는 \(\angle \rm C=90^{\rm o}\) 인 직각삼각형이고, 점 \(\rm C\) 의 평면 \(\beta\) 위로의 정사영을 \(\rm C'\) 이라 할 때, \(\overline{\rm AC'}=2\sqrt{35},\; \overline{\rm BC'}=\sqrt{21}\) 이다. 두 평면 \(\alpha, \; \beta\) 가 이루는 각의 크기를 \(\theta\) 라 할 때, \(\sin \theta=\dfrac{q}{p}\) 이다. \(p+..
평면 \(\alpha\) 위에 중심이 \(\rm O\) 이고 반지름의 길이가 \(2\) 인 원 \(C\) 가 있다. 직선 \(l\) 은 평면 \(\alpha\) 와 \(45^{\rm o}\) 의 각을 이루고, 직선 \(l\) 과 점 \(\rm O\) 사이의 거리는 \(2\) 이다. 점 \(\rm O\) 를 지나고 \(\alpha\) 에 수직인 직선이 \(l\)과 만날 때, \(l\) 을 포함하고 \(C\)와 한 점에서 만나는 두 평면이 이루는 예각의 크기를 \(\theta\) 라 하자. \(\cos ^2 \theta = \dfrac{q}{p}\) 일 때, \(p+q\) 의 값을 구하시오. (단, \(p, \;q\) 는 서로소인 자연수이다.) 정답 \(10\)
그림과 같이 평면 \(\alpha\) 와 교선 \(\rm A_1A_4\) 를 갖고, \(\angle \rm A_2=90^{\rm o}\) 인 사각형 \(\rm A_1A_2A_3A_4\) 가 다음 조건을 만족시킨다. (가) \(\overline{{\rm A}_k{\rm A}_{k+1}}=5-k \;\; (k=1,\;2,\;3)\) (나) 평면 \(\alpha\) 와 선분 \({\rm A}_k{\rm A}_{k+1}\) 이 이루는 각을 \(\theta_k\) 라 할 때, \(\sin \theta_k=\dfrac{k}{6}\) 이다. (\(k=2, \;3\)) \(\angle \rm A_4=\theta\) 라 하자. \(20 \tan ^2 \theta\) 의 값을 구하시오. 정답 \(45\)
평면 \(\alpha\) 위의 점 \(\rm A\) 와 평면 \(\alpha\) 위에 있지 않은 두 점 \(\rm B,\;C\) 에 대하여 직선 \(\rm AB\) 와 직선 \(\rm BC\) 가 평면 \(\alpha\) 와 이루는 각은 각각 \(30^{\rm o}\) 이고, 직선 \(\rm AC\) 가 평면 \(\alpha\) 와 이루는 각은 \(45^{\rm o}\) 이다. \(\overline{\rm AB}=4\) 이고, 선분 \(\rm AC\) 위의 한 점 \(\rm P\) 가 \(\overline{\rm BP}=\overline{\rm CP},\; \overline{\rm BP} \parallel \alpha\) 를 만족시킬 때, \(\overline{\rm AC}^2\) 의 값을 구하시오. (..