일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 | 31 |
- 수만휘 교과서
- 수열
- 함수의 연속
- 확률
- 수학질문
- 접선의 방정식
- 미분
- 심화미적
- 적분과 통계
- 미적분과 통계기본
- 적분
- 기하와 벡터
- 수학질문답변
- 중복조합
- 수학1
- 수악중독
- 경우의 수
- 정적분
- 수열의 극한
- 로그함수의 그래프
- 행렬과 그래프
- 함수의 그래프와 미분
- 도형과 무한등비급수
- 수학2
- 여러 가지 수열
- 행렬
- 함수의 극한
- 수능저격
- 이정근
- 이차곡선
- Today
- Total
목록(8차) 수학1 질문과 답변/행렬과 그래프 (136)
수악중독
방정식 \(x^3 -1=0\) 의 한 허근을 \(\omega\) 라 할 때, 행렬 \(A= \left ( \matrix { \overline {\omega} & \omega \\ 1 & \omega +1 } \right ) \) 에 대하여 \(A^{30}\) 의 모든 성분의 합은? (단, \(\overline {\omega}\) 는 \(\omega\) 의 켤레복소수이다.) ① \(2^{14}\) ② \(2^{15}\) ③ \(3 \times 2^{14}\) ④ \(2^{16}\) ⑤ \(3 \times 2^{15}\) 정답 ④
두 이차정사각행렬 \(P, \;Q\) 에 대하여 \(PQ=QP\) 이기 위한 충분 조건을 다음 중 모두 고른 것은? (단, \(E\) 는 단위행렬, \(O\) 는 영행렬이다.) ㄱ. \(PQ=O\) ㄴ. \(P+Q=2E\) ㄷ. \((PQ)^2 = (QP)^2\) ㄹ. \(P=Q^2\) ① ㄱ, ㄴ ② ㄴ, ㄷ ③ ㄴ, ㄹ ④ ㄱ, ㄷ, ㄹ ⑤ ㄴ, ㄷ, ㄹ 정답 ③ 행렬의 곱셈에서 교환법칙이 성립하는 5가지 경우 ① 둘 중 하나 이상이 O 행렬인 경우 ex) AO=OA=O ② 둘 중 하나 이상이 단위 행렬인 경우 ex) AE=EA=A ③ 둘의 관계가 역행렬 관계인 경우 더 나아가 둘의 곱이 단위 행렬의 실수배로 표현되는 경우 ex) AB=BA=E, AB=BA=kE (k는 실수) ④ 행렬의 거듭제곱 ex..
임의의 세 정사각행렬 \(A,\;B,\;C\) 에 대하여 다음 중 옳은 것을 모두 고른 것은? (단, \(E\) 는 단위행렬, \(O\) 는 영행렬이다.) ㄱ. \(A^2 =A^5 =E\) 이면 \(A=E\) 이다. ㄴ. \(A+B=E\) 이면 \(A^2 -B^2 =A-B\) 이다. ㄷ. \((A+E)^2 = A^2 +A +E\) 이다. ㄹ. \(AB=E,\; AC=O\) 이면 \(C=O\) 이다. ① ㄱ, ㄴ ② ㄴ, ㄷ ③ ㄱ, ㄴ, ㄷ ④ ㄱ, ㄴ, ㄹ ⑤ ㄱ, ㄷ, ㄹ 정답 ④ 행렬의 곱셈에서 교환법칙이 성립하는 5가지 경우 ① 둘 중 하나 이상이 O 행렬인 경우 ex) AO=OA=O ② 둘 중 하나 이상이 단위 행렬인 경우 ex) AE=EA=A ③ 둘의 관계가 역행렬 관계인 경우 더 나아가 둘의..
임의의 실수 \(x\) 에 대하여 행렬 \(\left ( \matrix{x & 1 & a} \right ) \left ( \matrix {x &1 \\ 2 & x \\ x & 3} \right ) \left ( \matrix {2 \\ x} \right ) \) 의 성분이 음이 아니기 위한 실수 \(a\) 의 최댓값과 최솟값의 합은? ① \(6\) ② \(4\) ③ \(2\) ④ \(0\) ⑤ \(-1\) 정답 ④
\(x, \;y\) 에 대한 연립방정식 \(\left ( \matrix {4 & 2 \\ 1 & 5} \right ) \left ( \matrix {x \\ y } \right ) = k \left ( \matrix {x \\ y} \right )\) 의 해를 \(x= \alpha,\;\; y= \beta\) 라 하자. \(\dfrac{\beta}{\alpha}>0\) 일때, \(\dfrac{3\alpha - \beta}{\alpha + \beta}\) 의 값을 구하시오. 정답 1
임의의 \(\theta\) 에 대하여 행렬 \(\left ( \matrix { \cos \theta +a & -\sin \theta \\ \sin \theta & b+ \cos \theta } \right )\) 의 역행렬이 존재하도록 할 때, 양의 실수 \(a,\;b\) 에 대하여 점 \((a,\;b)\) 가 존재하는 영역을 좌표평면 위에 나타내면? (단, 점선은 영역에 포함되지 않는다.) 정답 ②
두 행렬 \(A= \left ( \matrix { 2 & 1 \\ 2 & 3} \right ) ,\;\; X=\left ( \matrix {\sin \theta \\ \cos \theta}\right ) \) 에 대하여 \((A-kE)X=O\) 을 만족하는 \(\theta\) 가 존재하도록 하는 실수 \(k\) 의 합을 구하시오. (단, \(E\) 는 단위행렬이고, \(O\) 는 영행렬이다.) 정답 5
이차 정사각행렬 \(A,\; B\) 에 대하여 \(AB=A+B\) 가 성립할 때, 중 옳은 것을 모두 고른 것은? (단, \(E\) 는 단위행렬이다.) ㄱ. \(AB\) 의 역행렬이 존재한다. ㄴ. \((A-E)^{-1} = B-E\) ㄷ. \(AB=BA\) ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ④
좌표평면에서 두 점 \({\rm A}(1,\;\sqrt{3}),\; {\rm B}(1, \; -\sqrt{3})\) 에 대하여 다음 두 조건을 만족시키는 점 \({\rm P}(x,\;y)\) 가 나타내는 도형 전체의 길이는? (가) \(x^2 +y^2 =4\) (나) 선분 \(\rm AB\) 위의 임의의 점 \((1, \;a)\) 에 대하여 행렬 \( \left ( \matrix {x&y \\ 1&a} \right )\) 는 역행렬을 갖는다. ① \({\Large \frac{1}{3}} \pi\) ② \({\Large \frac{1}{2}} \pi\) ③ \(\pi\) ④ \({\Large \frac{4}{3}} \pi\) ⑤ \({\Large \frac{3}{2}} \pi\) 정답 ④