일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 |
8 | 9 | 10 | 11 | 12 | 13 | 14 |
15 | 16 | 17 | 18 | 19 | 20 | 21 |
22 | 23 | 24 | 25 | 26 | 27 | 28 |
29 | 30 |
- 경우의 수
- 함수의 극한
- 적분과 통계
- 수학2
- 미분
- 심화미적
- 행렬과 그래프
- 정적분
- 미적분과 통계기본
- 수열
- 수학1
- 행렬
- 중복조합
- 여러 가지 수열
- 도형과 무한등비급수
- 접선의 방정식
- 로그함수의 그래프
- 기하와 벡터
- 수만휘 교과서
- 수열의 극한
- 수학질문
- 수악중독
- 함수의 연속
- 이정근
- 적분
- 수능저격
- 이차곡선
- 확률
- 수학질문답변
- 함수의 그래프와 미분
- Today
- Total
목록2024/09 (96)
수악중독
좌표공간의 서로 다른 두 점 $\mathrm{A}(a, \; b, \; -5)$, $\mathrm{B}(-8, \; 6, \; c)$ 에 대하여 선분 $\mathrm{AB}$ 의 중점이 $zx$ 평면 위에 있고, 선분 $\mathrm{AB}$ 를 $1:2$ 로 내분하는 점이 $y$ 축 위에 있을 때, $a+b+c$ 의 값은? ① $-8$ ② $-4$ ③ $0$ ④ $4$ ⑤ $8$ 더보기정답 ⑤
좌표평면에서 점 $(1, \; 0)$ 을 중심으로 하고 반지름의 길이가 $6$ 인 원을 $C$ 라 하자. 포물선 $y^2=4x$ 위의 점 $\left (n^2, \; 2n \right )$ 에서의 접선이 원 $C$ 와 만나도록 하는 자연수 $n$ 의 개수는? ① $1$ ② $3$ ③ $5$ ④ $7$ ⑤ $9$ 더보기정답 ③
그림과 같이 한 변의 길이가 각각 $4, \; 6$ 인 두 정사각형 $\mathrm{ABCD, \; EFGH}$ 를 밑면으로 하고 $$\overline{\mathrm{AE}}=\overline{\mathrm{BF}}=\overline{\mathrm{CG}}=\overline{\mathrm{DH}}$$ 인 사각뿔대 $\mathrm{ABCD-EFGH}$ 가 있다. 사각뿔대 $\mathrm{ABCD-EFGH}$ 의 높이가 $\sqrt{14}$ 일 때, 사각형 $\mathrm{AEHD}$ 의 평면 $\mathrm{BFGC}$ 위로의 정사영의 넓이는? ① $\dfrac{10}{3}\sqrt{15}$ ② $\dfrac{11}{3}\sqrt{15}$ ③ $4\sqrt{15}$ ..
좌표공간에 두 점 $\mathrm{A}(a, \; 0, \; 0)$, $\mathrm{B} \left (0, \; 10\sqrt{2}, \; 0 \right )$ 과 구 $S:x^2+y^2+z^2=100$ 이 있다. $\angle \mathrm{APO}=\dfrac{\pi}{2}$ 인 구 $S$ 위의 모든 점 $\mathrm{P}$ 가 나타내는 도형을 $C_1$, $\angle \mathrm{BQO}=\dfrac{\pi}{2}$ 인 구 $S$ 위의 모든 점 $\mathrm{Q}$ 가 나타내는 도형을 $C_2$ 라 하자. $C_1$ 과 $C_2$ 가 서로 다른 두 점 $\mathrm{N}_1, \; \mathrm{N}_2$ 에서 만나고 $\cos (\angle \mathrm{N_1ON_2})=\dfrac{..
그림과 같이 두 점 $\mathrm{F}(4, \; 0)$, $\mathrm{F'}(-4, \; 0)$ 을 초점으로 하는 쌍곡선 $C:\dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ 이 있다. 점 $\mathrm{F}$ 를 초점으로 하고 $y$ 축을 준선으로 하는 포물선이 쌍곡선 $C$ 와 만나는 점 중 제$1$사분면 위의 점을 $\mathrm{P}$ 라 하자. 점 $\mathrm{P}$ 에서 $y$ 축에 내린 수선의 발을 $\mathrm{H}$ 라 할 때, $\overline{\mathrm{PH}}:\overline{\mathrm{HF}}=3:2\sqrt{2}$ 이다. $a^2 \times b^2$ 의 값을 구하시오. (단, $a>b>0$) 더보기정답 $63$
좌표평면 위의 다섯 점 $$\mathrm{A}(0, \; 8), \; \mathrm{B}(8, \; 0), \; \mathrm{C}(7, \; 1), \; \mathrm{D}(7, \; 0), \; \mathrm{E}(-4, \; 2)$$가 있다. 삼각형 $\mathrm{AOB}$ 의 변 위를 움직이는 점 $\mathrm{P}$ 와 삼각형 $\mathrm{CDB}$ 의 변 위를 움직이는 점 $\mathrm{Q}$ 에 대하여 $\left | \overrightarrow{\mathrm{PQ}} + \overrightarrow{\mathrm{OE}} \right |^2$ 의 최댓값을 $M$, 최솟값을 $m$ 이라 할 때, $M+m$ 의 값을 구하시오. (단, $\mathrm{O}$ 는 원점이다.) 더보기정..