일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 로그함수의 그래프
- 수만휘 교과서
- 도형과 무한등비급수
- 수학질문답변
- 여러 가지 수열
- 수열의 극한
- 중복조합
- 접선의 방정식
- 수학질문
- 행렬과 그래프
- 적분
- 수능저격
- 정적분
- 기하와 벡터
- 적분과 통계
- 미적분과 통계기본
- 수열
- 이정근
- 함수의 연속
- 확률
- 행렬
- 수학2
- 수학1
- 수악중독
- 심화미적
- 함수의 극한
- 이차곡선
- 경우의 수
- 미분
- 함수의 그래프와 미분
- Today
- Total
목록함수의 극한 (90)
수악중독
길이가 \(2\) 인 선분 \(\rm AB\) 의 연장선 위에 동점 \(\rm P\) 가 점 \(\rm B\) 에 대하여 점 \(\rm A\) 의 반대쪽에 있다. 선분 \(\rm AP\) 를 지름으로 하는 원 위에 \(\overline {\rm BP}=\overline {\rm PQ}\) 인 점 \(\rm Q\) 를 잡아 선분 \(\rm AB\) 의 연장선에 내린 수선의 발을 \(\rm R\) 이라 한다. 점 \(\rm P\) 가 점 \(\rm B\) 로부터 한없이 멀어져 갈 때, \(\overline {\rm BR}\) 의 극한값은? ① \(1\) ② \(\Large \frac{3}{2}\) ③ \(2\) ④ \(3\) ⑤ \(4\) 정답 ③
곡선 \(y=x^2\) 위에 두 점 \({\rm P}\left (a,\;a^2 \right ), \;\;{\rm Q}\left ( b,\; b^2 \right )\) 이 있다. 원점 \(\rm O\)와 점 \({\rm A}(1,\;1)\) 을 지나는 직선과 두 점 \(\rm P,\;Q\) 를 지나는 직선의 교점을 \(\rm G\) 라고 하자. \(\overline {\rm PQ} = \sqrt{2}\) 를 만족시키면서 점 \(\rm P\) 가 원점 \(\rm O\) 에 한없이 가까워질 때, 교점 \(\rm G\)가 한없이 가까워지는 점의 좌표는? (단, \(a
실수 전체에서 연속인 함수 \(f(x)\) 에 대하여 방정식 \(f(x)=f(x+1)\) 이 중간값의 정리에 의해 \(-1
함수 \(f(x)\) 에 대하여 \(\lim \limits _{x \to 0} {\Large \frac {f(x)-1}{x}} =0\) 일 때, 에서 옳은 것을 모두 고른 것은? ㄱ. \(f(0)=1\) ㄴ. \(\lim \limits _{x \to 0} f(x) =0\) ㄷ. \( \lim \limits _{h \to 0} \{ f(0+h)-f(0-h)\} =0\) ① ㄱ ② ㄷ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ②
그림과 같이 삼차함수 \(y=f(x)\) 는 \[f(-1)=f(0)=f(2)=2\] 를 만족한다. 중 극한값이 존재하는 것을 모두 고르면? ㄱ. \(\lim \limits _{x \to 2} {\Large \frac{x-2}{f(x)-2}}\) ㄴ. \(\lim \limits _{x \to 2} {\Large \frac {f(x)-2}{f(x-2)}}\) ㄷ. \( \lim \limits _{x \to 2} {\Large \frac{f(x-2)}{x-2}}\) ① ㄱ ② ㄷ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ③
\(a>0,\;\;b>0,\;\;a\ne 1,\;\; b \ne 1\) 일 때, 함수 \[f(x)=\dfrac{b^x +\log _a x}{a^x + \log _b x}\] 에 대하여 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. \(11\) 이다. ㄴ. \(b
그림과 같이 길이가 24인 선분 \(\rm AB\) 를 지름으로 하는 반원 \(\rm O\) 가 있다. 반지름 \(\rm OA\) 위의 한 점 \(\rm P\) 를 지나는 직선이 반원의 호와 만나는 점을 \(\rm Q\) 라 하자. \(\overline {\rm PO}=6,\;\angle{\rm QPB}=\theta\), 부채꼴 \(\rm OBQ\) 의 넓이를 \(f(\theta)\) 라 할 때, \(\mathop {\lim }\limits_{\theta \to 0} {\Large {{f\left( \theta \right)} \over \theta }}\) 의 값을 구하시오. (단, \(\theta\) 의 단위는 라디안이다.) 정답 108
이 중에서도 가장 출제 빈도가 높은 것은 삼각함수와 관련된 첫번째 극한이다. 대개의 경우 그림과 함께 출제되는 이 유형의 문제에서는 반드시 각도(angle)가 등장하게 되므로, 반드시 문제에서 싸인(sin)함수를 만들어내야 한다. 싸인함수를 만들어내는데 가장 유용한 것은 바로 싸인법칙이다. 다음의 예제를 풀어보자. 이 문제에서는 최종적으로 함수의 극한값을 묻고 있다. 문제에서 주어진 그림을 보면 각도 θ 가 등장하는 것을 볼 수 있다. 따라서 우리는 무조건 싸인함수(sin)를 만들어냐 하며, 싸인함수를 등장시키기 위한 가장 유용한 방법은 바로 싸인 법칙이 된다. 다음의 풀이에서 싸인을 만들어 내기 위해 싸인 법칙을 어떻게 사용했는지 보자. 싸인법칙을 이용하여 싸인함수를 등장시켰으며 결과적으로 삼각함수의 ..
수능 모의고사 문제 DB작업이 중반으로 접어들면서 이제는 뭔가 만들어져 가는 느낌이 든다. 여름 방학을 맞이하여 고3들을 데리고 수능 막판 준비를 하고 있는데, 만들어지고 있는 DB를 이용하여 함수의 극한 단원의 유형별 출제 비율을 확인해 봤다. 물론 DB에는 훨씬 더 정교한 문제 유형분류가 되어 있지만, 학생들에게는 크게 6가지 정도로 분류하여 보여주었다. 가장 높은 출제율은 역시 극한값을 구하는 전형적인 유형이었다. 거의 60%를 차지하고 있으며, 대개는 2점짜리 문제로 출제가 된다. 두번째로 출제율이 높은 것은 극한의 활용 유형이다. 이것은 극한값을 구하기 위한 식을 상황을 보고 학생들 스스로가 만들어 극한값을 구해내야 하는 유형이다. 세번째는 미정계수를 구하는 유형이다. 네번째는 x^n이 포함된 ..