일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
6 | 7 | 8 | 9 | 10 | 11 | 12 |
13 | 14 | 15 | 16 | 17 | 18 | 19 |
20 | 21 | 22 | 23 | 24 | 25 | 26 |
27 | 28 | 29 | 30 | 31 |
- 중복조합
- 수악중독
- 수학질문
- 적분
- 접선의 방정식
- 로그함수의 그래프
- 심화미적
- 함수의 연속
- 도형과 무한등비급수
- 수학질문답변
- 확률
- 행렬과 그래프
- 수열의 극한
- 경우의 수
- 수능저격
- 기하와 벡터
- 여러 가지 수열
- 정적분
- 수열
- 수만휘 교과서
- 수학2
- 적분과 통계
- 행렬
- 미분
- 함수의 극한
- 함수의 그래프와 미분
- 미적분과 통계기본
- 수학1
- 이정근
- 이차곡선
- Today
- Total
목록심화미적 (57)
수악중독
오른쪽 그림과 같이 점 \({\rm P} (x,\;y)\) 가 원 \(x^2 +y^2 =4\) 의 \(y \ge 0 \) 인 부분을 움직일 때, 세 점 \({\rm A}(-2,\;0),\; {\rm P}(x,\;y),\;{\rm B}(2,\;0)\) 를 꼭짓점으로 하는 삼각형의 넓이를 \(S(x)\) 라 하자. \({\displaystyle \int}_{- 2}^2 {S(x)} \;dx = k\) 라 할 때, \(\dfrac {k}{\pi}\) 의 값을 구하시오. 정답 4
\(x>0\) 일 때, 함수 \(f(x)=\displaystyle \int _{x}^{x+1} \left (t+{\dfrac{2}{t}} \right ) dt\) 의 최솟값은? ① \({\dfrac{1}{2}} + \ln 2\) ② \({\dfrac{3}{2}} + \ln 2\) ③ \({\dfrac{5}{2}} + \ln 2\) ④ \({\dfrac{1}{2}} + 2\ln 2\) ⑤ \({\dfrac{3}{2}} +2 \ln 2\) 정답 ⑤
\(a>0,\;\;b>0,\;\;a\ne 1,\;\; b \ne 1\) 일 때, 함수 \[f(x)=\dfrac{b^x +\log _a x}{a^x + \log _b x}\] 에 대하여 에서 옳은 것만을 있는 대로 고른 것은? ㄱ. \(11\) 이다. ㄴ. \(b
모든 실수 \(x\) 에 대하여 미분가능한 함수 \(f(x)\) 가 \(f'(1)=2\) 일 때, \[\lim \limits_{x \to 0} \dfrac{f(\cos 3x)-f(\cos x)}{x^2}\] 의 값은? ① \(8\) ② \(4\) ③ \(2\) ④ \(-4\) ⑤ \(-8\) 정답 ⑤
곡선 \(y=e^x\) 위의 점 \(\rm P\) 와 원 \((x-1)^2 +y^2 =1\) 위의 점 \(\rm Q\) 를 연결하는 선분 \(\rm PQ\) 의 길이의 최솟값은? ① \(\sqrt{2}-2\) ② \(\sqrt{2}-1\) ③ \(\sqrt{2}\) ④ \(\sqrt{2}+1\) ⑤ \(\sqrt{2}+2\) 정답 ②
부등식 \(-\ln x \le y \le \ln x,\;\;x>1\) 을 만족시키는 영역 위의 두 동점 \({\rm P} (a,\;b),\;\; {\rm Q}(c,\;d)\) 에 대하여 \(\dfrac{b+d}{a+c}\) 의 최댓값은? ① \(\dfrac{1}{e}\) ② \(1\) ③ \(\sqrt{e}\) ④ \(e\) ⑤ \(e^2\) 정답 ①
\(x-y={\dfrac {\pi}{2}}\) 이고 \(0 \leq x \leq \pi \) 일 때, 두 점 \({\rm P} \left ( x,\;\sin x \right ), \;\;{\rm Q} \left (y,\; -\sin y \right ) \) 사이의 거리를 최대로 하는 \(x\) 의 값은? ① \(\dfrac{\pi}{6}\) ② \(\dfrac{\pi}{4}\) ③ \(\pi\) ④ \({\dfrac{3}{4}} \pi \) ⑤ \({\dfrac{2}{3}} \pi \) 정답 ④
오른쪽 그림과 같이 \(\angle {\rm B} = \angle {\rm C} = 90^o\) 인 사다리꼴 \(\rm ABCD\) 가 있다. \(\overline {\rm AB} = 2,\;\overline {\rm BE} =1,\;\angle {\rm DEC}=45^o\) 이고 \(\angle {\rm DAC}=\theta\) 에 대하여 \(\tan \theta = {\dfrac {3}{4}}\) 이다. \(\overline {\rm EC} = x\) 라 할 때, \(x^2 +4x \) 의 값을 구하시오. 정답 15
포물선 \(y=x^2\) 위의 세 점 \({\rm A} \left ( - {\dfrac{1}{2}},\;{\dfrac{1}{4}} \right ),\;\;{\rm B} \left (1,\;1 \right ),\;\;{\rm P} \left ( a,\;a^2 \right)\) 에 대하여 \(\angle {\rm APB} = \theta\) 라 한다. 점 \(\rm P\) 가 두 점 \(\rm A,\;B\) 사이를 움직일 때, \(\theta\) 의 크기를 최소로 하는 \(a\) 의 값은? ① \(- \dfrac{1}{4} \) ② \(\dfrac{1}{4} \) ③ \(- \dfrac{1}{3} \) ④ \(\dfrac{1}{3} \) ⑤ \(0\) 정답 ①