일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 행렬
- 수열의 극한
- 수악중독
- 수학질문
- 확률
- 수만휘 교과서
- 수열
- 함수의 극한
- 적분
- 이정근
- 미분
- 도형과 무한등비급수
- 적분과 통계
- 기하와 벡터
- 로그함수의 그래프
- 수학1
- 수학2
- 정적분
- 경우의 수
- 중복조합
- 수학질문답변
- 함수의 연속
- 이차곡선
- 접선의 방정식
- 행렬과 그래프
- 여러 가지 수열
- 미적분과 통계기본
- 수능저격
- 심화미적
- 함수의 그래프와 미분
- Today
- Total
목록미적분과 통계기본 (526)
수악중독
닫힌 구간 \([0,\;2]\) 에서 정의된 함수 \[f(x)=ax(x-2)^2\;\; \left ( a> \dfrac{1}{2} \right )\] 에 대하여 곡선 \(y=f(x)\) 와 직선 \(y=x\) 의 교점 중 원점 \(\rm O\) 가 아닌 점을 \(\rm A\) 라 하자. 점 \(\rm P\) 가 원점으로부터 점 \(\rm A\) 까지 곡선 \(y=f(x)\) 위를 움직일 때, 삼각형 \(\rm OAP\) 의 넓이가 최대가 되는 점 \(\rm P\) 의 \(x\) 좌표가 \(\dfrac{1}{2}\) 이다. 상수 \(a\) 의 값은? ① \(\dfrac{5}{4}\) ② \(\dfrac{4}{3}\) ③ \(\dfrac{17}{12}\) ④ \(\dfrac{3}{2}\) ⑤ \(\dfrac..
그림과 같이 곡선 \(y=x^2\) 과 양수 \(t\) 에 대하여 세 점 \({\rm O}(0,\;0),\;\; {\rm A}(t,\;0),\;\; {\rm B} \left ( t,\; t^2 \right ) \) 을 지나는 원 \(C\) 가 있다. 원 \(C\) 의 내부와 부등식 \(y \le x^2\) 이 나타내는 영역의 공통부분의 넓이를 \(S(t)\) 라 할 떄, \(S'(1)=\dfrac{p \pi +q}{4}\) 이다.\(p^2 +q^2\) 의 값을 구하시오. (단, \(p,\;q\) 는 정수이다.) 정답 13
\(4\) 개의 야구팀 \(\rm A,\;B,\;C,\;D\) 가 다음과 같은 방법으로 우승팀을 결정하기로 한다.(가) \(\rm A\) 팀과 \(\rm B\) 팀이 경기를 하고, \(\rm C\) 팀과 \(\rm D\) 팀이 경기를 한다.(나) (가)에서 이긴 팀끼리 경기를 한다.(다) (가)에서 진 팀끼리 경기를 한다.(라) (나)에서 진 팀과 (다)에서 이긴 팀이 경기를 한다.(마) (나)에서 이긴 팀과 (라)에서 이긴 팀이 경기를 한다.(바) (마)에서 이긴 팀이 우승팀이 된다. 매 경기에서 각 팀이 이길 확률은 모두 \(\dfrac{1}{2}\) 로 같다고 하자. \(\rm A\) 팀이 우승했을 때, \(\rm A\) 팀이 (가)에서 이겼을 확률은 \(\dfrac{q}{p}\) 이다. 이때, \..
철수는 \(3\) 개의 예선문제와 결과에 따라 \(1\) 개의 찬스문제가 주어지는 퀴즈대회에 참가하는데, 찬스문제는 예선문제를 \(2\) 개 맞히고 \(1\) 개 틀린 경우만 주어진다. \(3\) 개의 예선문제를 모두 맞히거나 찬스문제를 맞혀야 예선을 통과한다. 각각의 예선문제를 맞힐 확률이 \(\dfrac{1}{3}\) 이고, 찬스문제를 맞힐 확률이 \(\dfrac{1}{4}\) 일 때, 예선을 통과할 확률은? ① \(\dfrac{5}{54}\) ② \(\dfrac{1}{9}\) ③ \(\dfrac{7}{54}\) ④ \(\dfrac{4}{27}\) ⑤ \(\dfrac{1}{6}\) 정답 ①
주머니 속에 빨간색 구슬 \(3\) 개, 노란색 구슬 \(2\) 개, 파란색 구슬 \(1\) 개가 들어 있다. 이 주머니에서 구슬을 임의로 한 개를 꺼내어 색깔을 확인한 후 다시 넣는다. 색깔이 빨간색, 노란색, 파란색이면 각각 \(1,\;2,\;3\) 점의 점수를 얻는다. 이 시행을 \(3\) 번 할 때 얻은 점수의 합이 \(5\) 점일 확률은? ① \(\dfrac{1}{4}\) ② \(\dfrac{7}{24}\) ③ \(\dfrac{1}{3}\) ④ \(\dfrac{3}{8}\) ⑤ \(\dfrac{5}{12}\) 정답 ②
어떤 제품을 생산하는 세 공장 \(\rm A,\;B,\;C\) 가 있다. 공장 \(\rm A\) 에서 생산한 제품의 불량률은 \(2%\) 이고, 공장 \(\rm B,\;C\) 에서 생산한 제품의 불량률은 각각 \(1%\) 이다. 세 공장 중 임의로 한 공장을 선택하고, 그 공장에서 생산한 제품 \(3\) 개를 임의추출하여 조사할 때, \(2\) 개가 불량품일 확률을 \(p\) 라 하자. \(10^6 p\) 의 값을 구하시오. 정답 590
서로 독립인 두 사건 \(\rm A,\;B\) 에 대하여 \(\rm P \left ( A \cap B^C \right ) = \dfrac{1}{6},\;\;P \left ( A^C \cap B \right ) = \dfrac{1}{3} \) 일 때, \(\rm P (A \cap B) ={\it k}\) 이다. 가능한 \(k\) 의 값들의 곱을 구하면? ① \(0\) ② \(\dfrac{1}{18}\) ③ \(\dfrac{1}{9}\) ④ \(\dfrac{1}{6}\) ⑤ \(\dfrac{1}{3}\) 정답 ②
다음 그림과 같이 원 위에 네 점 \(\rm A,\;B,\;C,\;D\) 가 있다. 한 개의 주사위를 던져서 나오는 눈의 수에 따라 점 \(\rm P\) 가 \(\rm A\) 를 출발하였다. 다음과 같은 방법으로 시계 반대 방향으로 움직인다. "홀수의 눈이 나오면 안 움직이고, 짝수의 눈이 나오면 나오는 눈의 수 만큼 다른 점으로 이동한다."주사위를 \(n\) 번 던진 후에 \(\rm A\) 를 출발한 점 \(\rm P\) 가 점 \(\rm C\) 에 도달할 확률을 \({\rm P}_n\) 이라 할 때, 다음 중 옳은 것은? (단, 원 위에 두 점 사이에 간격을 \(1\) 로 본다.) ㄱ. \({\rm P}_1 = \dfrac{1}{3}\) ㄴ. \({\rm P}_{n+1} = \dfrac{1}{3} {..
병우는 전국 학생 검도왕 선발대회에 참가하여 결선에 진출했다. 오른쪽 그림과 같이 \(7\) 명이 토너먼트 방식으로 시합을 해서 병우가 우승했을 때, 병우가 두 번의 시합을 치렀을 확률은? (단, 선수가 시합에서 이길 확률은 모두 \(\dfrac{1}{2}\) 이다.) ① \(\dfrac{1}{7}\) ② \(\dfrac{1}{5}\) ③ \(\dfrac{1}{4}\) ④ \(\dfrac{1}{3}\) ⑤ \(\dfrac{2}{5}\) 정답 ③
한국, 북한 등 \(7\) 개 나라가 참가하는 국제 축구 대회에서 그림과 같이 토너먼트 방식으로 축구시합을 하고자 한다. 그림과 같이 한국이 먼저 배정되어 있고, 나머지 \(6\) 개 나라를 추첨으로 배정하여 시합을 할 때, 한국과 북한이 시합을 하게 될 확률은? (단, 각 위치에 배정될 확률은 같으며, 각 팀이 시합을 하여 이길 확률은 \(\dfrac{1}{2}\) 이고, 질 확률도 \(\dfrac{1}{2}\) 이다.) ① \(\dfrac{5}{24}\) ② \(\dfrac{13}{48}\) ③ \(\dfrac{7}{24}\) ④ \(\dfrac{3}{8}\) ⑤ \(\dfrac{17}{48}\) 정답 ③