일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 수학질문
- 확률
- 미분
- 함수의 연속
- 이정근
- 수학질문답변
- 행렬
- 적분과 통계
- 미적분과 통계기본
- 행렬과 그래프
- 경우의 수
- 수학1
- 기하와 벡터
- 정적분
- 중복조합
- 이차곡선
- 수능저격
- 함수의 극한
- 수열
- 도형과 무한등비급수
- 로그함수의 그래프
- 수만휘 교과서
- 심화미적
- 수열의 극한
- 함수의 그래프와 미분
- 수악중독
- 수학2
- 접선의 방정식
- 여러 가지 수열
- 적분
- Today
- Total
목록기하와 벡터 (173)
수악중독
수평면 \( \alpha \) 위에 한 모서리의 길이가 \( a \)인 정사면체가 놓여 있다. 밑면의 한 모서리를 회전축으로 하여 \(\ \alpha \) 와 \( 60 ^o \) 의 각을 이루도록 기울였을 때, 이 정사면체의 수평면 \( \alpha \) 위로의 정사영의 넓이는? ① \( \dfrac{(1+ \sqrt{6} ) \sqrt{3}}{12} a^2 \) ② \( \dfrac{(1+ \sqrt{6} ) \sqrt{3}}{8} a^2 \) ③ \( \dfrac{(1+ \sqrt{5} ) \sqrt{2}}{8} a^2 \) ④ \( \dfrac{(2+ \sqrt{6} ) \sqrt{3}}{6} a^2 \) ⑤ \( \dfrac{(1+ \sqrt{3} ) \sqrt{6}}{4} a^2 \) 정답 ①
공간의 세 점 \( \mbox{A, B, C} \) 가 다음 조건을 만족시킨다. \[ \overline{\mbox{AB}} = \sqrt{5},\quad \overline{\mbox{BC}} = \sqrt{10},\quad \overline{\mbox{CA}} = \sqrt{13} \] 이때 선분 \( \mbox{AB} \) , 선분 \( \mbox{BC} \), 선분 \( \mbox{CA} \) 를 각각 지름으로 하는 세 구의 교점에서부터 평면\( \mbox{ABC} \)까지의 거리를 구하여라. 정답 \(\dfrac{6}{7}\)
반지름의 길이가 각각 \(2,\; 4,\; 8\)이고 서로 외접하는 세 개의 구가 평면 \(\alpha\) 위에 놓여 있다. 세 구의 중심을 각각 \(\rm A,\;B,\;C\)라 하고, 평면 \(\rm ABC\)와 평면 \(\alpha\)가 이루는 예각의 크기를 \(\theta\)라 하자. \(\cos \theta ={\Large \frac{b}{a}} \sqrt{2}\) 일 때, \(a+b\)의 값을 구하시오. (단, \(a,\;b)\)는 서로소인 자연수이다.) 정답 3
좌표공간에서 중심이 점 \(\rm A\)인 구 \((x-2)^2 +(y-1)^2 +(z+1)^2 =\) \(\dfrac{9}{4}\)와 중심이 점 \(\rm B\)인 구 \((x-3)^2 +(y-3)^2 +(z-1)^2 =\) \(\dfrac{27}{4}\)가 만나서 생기는 원을 \(S\)라 하자. 원 \(S\) 위의 두 점 \(\rm P,~Q\)에 대하여 \(\overrightarrow {{\rm{AP}}} \cdot \overrightarrow{{\rm {BQ}}} \)의 최댓값을 \(M\), 최솟값을 \(m\)이라고 할 때, \(M-m=\) \(\dfrac{b}{a}\)이다. \(a+b\)의 값을 구하시오. (단, \(a,~b\)는 서로소인 자연수이다.) 정답 35
오른쪽 그림과 같이 모서리의 길이가 \(2\)인 정육면체 \(\rm ABCD-EFGH\)가 평면 \(\alpha\) 위에 놓여 있다. 이 정육면체의 대각선 \(\rm AG\)에 평행하게 평행광선을 비출 때, 평면 \(\alpha\) 위에 생기는 정육면체의 밑면을 포함한 그림자의 넓이를 구하시오. 정답 12
그림과 같이 좌표공간에 두 구 \({\rm A} \; : \; x^2 +y^2 +z^2 =4\), \({\rm B} \; : \; x^2 +(y-6)^2 +z^2 =1\)이 있다. 두 구 \(\rm A,\;B\) 밖의 점 \(\rm P\)\((x,\; y,\; z)\)에서 두 구 \(\rm A,\;B\)에 그은 접선의 점점까지의 선분들의 집합을 각각 \(S(\rm P\; ; \; A)\), \(S(\rm P \; ; \;B)\)라 하자. 원점 \(\rm O\)에 대하여 \(\overline{\rm OP}=m\)이라 할 때, 도형 \(S(\rm P\; ; \; A)\)와 도형 \(S(\rm P \; ; \;B)\)가 닮음이 되도록 하는 \(m\)의 최댓값을 구하시오. 정답 12
오른쪽 그림과 같이 한 모서리의 길이가 \(2\) 인 정육면체 \(\rm ABCD-EFGH\) 가 있다. 직선 \(\rm AG\) 에 평행한 평행 광선에 의하여 이 광선과 수직인 평면에 정육면체 \(\rm ABCD-EFGH\) 의 그림자가 생겼다. 이 그림자의 넓이를 \(S\) 라 할 때, \(S^2\) 의 값을 구하시오. 정답 48
좌표공간에 두 점 \({\rm A} (3, \; 2, \; 4), \;\; {\rm B} (1, \; 4, \; 8)\)이 있다. 점 \(\rm P\)가 구 \(x^2 +y^2 +z^2 =1\) 위를 움직일 때, \( {\overline {\rm PA}}^2 + {\overline {\rm PB}}^2\)의 최솟값을 구하시오. 정답 84 풀이가 잘못되었습니다. PM의 길이가 6 이므로 이를 제곱하면 36이 되어야 하네요 맨 마지막 줄에서 2(6+36)=84 가 되어 정답이 84가 됩니다. 풀이의 오류를 지적해 주신 최기찬 님께 감사드립니다. 관련개념 [수능 수학] - 파푸스의 중선정리
평평한 책상 위에 반지름의 길이가 \(2\) 인 공이 놓여 있다. 책상 위의 한 점 \(\rm O\) 에서 공의 중심까지의 거리는 \(4\) 이다. 오른쪽 그림과 같이 점 \(\rm O\) 에서 만나고 공에 접하면서 책상에 수직으로 두 책받침을 세울 때, 두 책받침이 이루는 각의 크기를 \(\theta\) 라 하자. 이때, \(\sin \dfrac{\theta}{2}\) 의 값은? ① \(\dfrac{\sqrt{3}}{3}\) ② \(\dfrac{1}{2}\) ③ \(\dfrac{\sqrt{2}}{2}\) ④ \(\dfrac{\sqrt{3}}{2}\) ⑤ \(\dfrac{2\sqrt{2}}{3}\) 정답 ①
오른쪽 그림과 같이 한 모서리의 길이가 \(6\) 인 정육면체 \(\rm ABCD-EFGH\) 에서 \(\overline {\rm PQ}\) 가 \(\overline {\rm AC}\) 와 \(\overline {\rm DF}\) 에 동시에 수직이 되도록 \(\overline {\rm AC}\) 위에 점 \(\rm P\) 를, 대각선 \(\rm DF\) 위에 점 \(\rm Q\) 를 잡을 때, \(\overline {\rm PQ}\) 의 길이는? ① \(\sqrt{2}\) ② \(\sqrt{3}\) ③ \(2\) ④ \(\sqrt{5}\) ⑤ \(\sqrt{6}\) 정답 ⑤