일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 기하와 벡터
- 적분
- 행렬
- 함수의 연속
- 접선의 방정식
- 확률
- 수만휘 교과서
- 이정근
- 적분과 통계
- 로그함수의 그래프
- 수학질문
- 중복조합
- 수열
- 수악중독
- 이차곡선
- 심화미적
- 함수의 극한
- 여러 가지 수열
- 수학2
- 함수의 그래프와 미분
- 수학1
- 수능저격
- 경우의 수
- 미적분과 통계기본
- 정적분
- 도형과 무한등비급수
- 수학질문답변
- 수열의 극한
- 미분
- 행렬과 그래프
- Today
- Total
목록확률과 통계 - 문제풀이/확률 (83)
수악중독
$1$ 부터 $6$ 까지의 자연수가 하나씩 적혀 있는 $6$ 장의 카드가 들어 있는 주머니가 있다. 이 주머니에서 임의로 두 장의 카드를 동시에 꺼내어 적혀 있는 수를 확인한 후 다시 넣는 시행을 두 번 반복한다. 첫 번째 시행에서 확인한 두 수 중 작은 수를 $a_1$, 큰 수를 $a_2$ 라 하고, 두 번째 시행에서 확인한 두 수 중 작은 수를 $b_1$, 큰 수를 $b_2$ 라 하자. 두 집합 $A, \; B$ 를 $$A=\{ x \; | \; a_1 \le x \le a_2 \}, \;\;\; B=\{ x\; |\; b_1 \le x \le b_2 \}$$ 라 할 때, $A \cap B \ne \varnothing$ 일 확률은? ① $\dfrac{3}{5}$ ② $\dfrac{2}{3}$ ③ $\..
집합 $X=\{ 1, \; 2, \; 3, \; 4\}$ 의 공집합이 아닌 모든 부분집합 $15$ 개 중에서 임의로 서로 다른 세 부분집합을 뽑아 임의로 일렬로 나열하고, 나열된 순서대로 $A, \; B, \; C$ 라 할 때, $A \subset B \subset C$ 일 확률은? ① $\dfrac{1}{91}$ ② $\dfrac{2}{91}$ ③ $\dfrac{3}{91}$ ④ $\dfrac{4}{91}$ ⑤ $\dfrac{5}{91}$ 더보기 정답 ②
자연수 $n\;(n\ge3)$ 에 대하여 집합 $A$ 를 $$A=\{(x, \; y)\; |\; 1 \le x \le y \le n, \; x 와\; y는 \; 자연수\}$$ 라 하자. 집합 $A$ 에서 임의로 선택된 한 개의 원소 $(a, \; b)$ 에 대하여 $b$ 가 $3$ 의 배수일 때, $a=b$ 일 확률이 $\dfrac{1}{9}$ 가 되도록 하는 모든 자연수 $n$ 의 값의 합을 구하시오. 정답 $48$