일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 적분
- 심화미적
- 확률
- 미적분과 통계기본
- 수학1
- 접선의 방정식
- 여러 가지 수열
- 수능저격
- 수학2
- 수악중독
- 중복조합
- 이차곡선
- 이정근
- 수학질문
- 함수의 극한
- 수열의 극한
- 경우의 수
- 적분과 통계
- 수열
- 정적분
- 함수의 그래프와 미분
- 기하와 벡터
- 행렬
- 미분
- 도형과 무한등비급수
- 로그함수의 그래프
- 함수의 연속
- 행렬과 그래프
- 수학질문답변
- 수만휘 교과서
- Today
- Total
목록수학2 - 문제풀이 (441)
수악중독
상수 $k$ 에 대하여 함수 $f(x)=x^3-3x^2-9x+k$ 의 극솟값이 $-17$ 일 때, 함수 $f(x)$ 의 극댓값은? ① $11$ ② $12$ ③ $13$ ④ $14$ ⑤ $15$ 더보기정답 ⑤
함수 $f(x)=x^2+1$ 의 그래프와 $x$ 축 및 두 직선 $x=0, \; x=1$ 로 둘러싸인 부분의 넓이를 점 $(1, \; f(1))$ 을 지나고 기울기가 $m \; (m \ge 2)$ 인 직선이 이등분할 때, 상수 $m$ 의 값은? ① $\dfrac{5}{2}$ ② $3$ ③ $\dfrac{7}{2}$ ④ $4$ ⑤ $\dfrac{9}{2}$ 더보기정답 ②
최고차항의 계수가 $1$ 인 삼차함수 $f(x)$ 와 실수 전체의 집합에서 정의된 함수 $g(x)$ 가 모든 실수 $x$ 에 대하여 $$(x-1)g(x)=|f(x)|$$ 를 만족시킨다. 함수 $g(x)$ 가 $x=1$ 에서 연속이고 $g(3)=0$ 일 때, $f(4)$ 의 값은? ① $9$ ② $12$ ③ $15$ ④ $18$ ⑤ $21$ 더보기정답 ①
시각 $t=0$ 일 때 동시에 원점을 출발하여 수직선 위를 움직이는 두 점 $\mathrm{P, \; Q}$의 시각 $t \; (t \ge 0)$ 에서의 속도가 각각 $$v_1(t)=-3t^2+at, \quad v_2(t)=-t+1$$ 이다. 출발한 후 두 점 $\mathrm{P, \; Q}$ 가 한 번만 만나도록 하는 양수 $a$ 에 대하여 점 $\mathrm{P}$ 가 시각 $t=0$ 에서 시각 $t=3$ 까지 움직인 거리는? ① $\dfrac{29}{2}$ ② $15$ ③ $\dfrac{31}{2}$ ④ $16$ ⑤ $\dfrac{33}{2}$ 더보기정답 ①
최고차항의 계수가 $1$ 인 사차함수 $f(x)$ 에 대하여 함수 $$g(x)=\begin{cases} f(x) & (x \le 1) \\ f(x-1)+2 & (x>1) \end{cases}$$ 은 실수 전체의 집합에서 미분가능하고, 곡선 $y=g(x)$ 위의 점 $(0, \; g(0))$ 에서의 접선의 방정식이 $y=2x+1$ 이다. $g'(t)=2$ 인 서로 다른 모든 실수 $t$ 의 값의 합은? ① $4$ ② $\dfrac{9}{2}$ ③ $5$ ④ $\dfrac{11}{2}$ ⑤ $6$ 더보기정답 ③
함수 $f(x)=\left (x^2+3x \right ) \left (x^2-x+2 \right )$ 에 대하여 $f'(2)$ 의 값을 구하시오. 더보기정답 $58$
실수 전체의 집합에서 미분가능한 함수 $f(x)$ 가 모든 실수 $x$ 에 대하여 $$\{f(x)\}^2=2 \displaystyle \int_3^x \left (t^2+2t \right ) f(t)dt$$ 를 만족시킬 때, $\displaystyle \int_{-3}^0 f(x) dx $ 의 최댓값을 $M$, 최솟값을 $m$ 이라 하자. $M-m$ 의 값을 구하시오. 더보기정답 $54$
최고차항의 계수가 $1$ 인 삼차함수 $f(x)$ 에 대하여 함수 $g(x)$ 를 $$g(x)=\begin{cases} f(x)+x & (f(x) \ge 0) \\ 2f(x) & (f(x) (가) 함수 $g(x)$ 가 $x=t$ 에서 불연속인 실수 $t$ 의 개수는 $1$ 이다.(나) 함수 $g(x)$ 가 $x=t$ 에서 미분가능하지 않은 실수 $t$ 의 개수는 $2$ 이다. $f(-2)=-2$ 일 때, $f(6)$ 의 값을 구하시오. 더보기정답 $486$
두 실수 $a, \; b$ 에 대하여 함수 $f(x)$ 는 $$f(x)=\begin{cases} 2^{x+a} & (x \le 0) \\ (x+b)^2 & (x>0) \end{cases}$$ 이다. 실수 $t$ 에 대하여 $x$ 에 대한 방정식 $f(x)=t$ 의 서로 다른 실근의 개수를 $g(t)$ 라 할 때, 함수 $g(t)$ 는 다음 조건을 만족시킨다. $\lim \limits_{t \to k-} g(t) \ne \lim \limits_{t \to k+} g(t)$ 와 $\lim \limits_{t \to 2k-} g(t) \ne \lim \limits_{t \to 2k+} g(t)$ 를 모두 만족시키는 양수 $k$ 가 존재한다. $\lim \limits_{t \to 16-} g(t) \times ..
최고차항의 계수가 양수인 이차함수 $f(x)$ 가 다음 조건을 만족시킨다. (가) $\lim \limits_{x \to 0-} \dfrac{\sqrt{x^2}-f(x)}{x+f(x)} \times \lim \limits_{x \to 0+} \dfrac{\sqrt{x^2}-f(x)}{x+f(x)}=-2$ (나) $\lim \limits_{x \to a} \dfrac{f(x-4)f(x+1)}{\sqrt{x^2}-3}$ 의 값이 존재하지 않는 실수 $a$ 의 개수는 $1$ 이다. $f(24)$ 의 값을 구하시오. 더보기정답 $40$