일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 접선의 방정식
- 적분과 통계
- 도형과 무한등비급수
- 수학1
- 수만휘 교과서
- 수학2
- 중복조합
- 경우의 수
- 함수의 연속
- 기하와 벡터
- 이차곡선
- 수학질문
- 수학질문답변
- 행렬과 그래프
- 미분
- 함수의 그래프와 미분
- 행렬
- 적분
- 수능저격
- 이정근
- 수열
- 미적분과 통계기본
- 확률
- 함수의 극한
- 심화미적
- 여러 가지 수열
- 정적분
- 수악중독
- 로그함수의 그래프
- 수열의 극한
- Today
- Total
목록(8차) 수학1 질문과 답변 (851)
수악중독
\(n\) 개의 항으로 이루어진 등차수열 \(a_1 , \; a_2 , \; a_3 ,\; \cdots , \; a_n\) 이 다음 조건을 만족한다. (가) 처음 \(4\) 개 항의 합은 \(26\) 이다. (나) 마지막 \(4\) 개 항의 합은 \(134\) 이다. (다) \(a_1 +a_2 +a_3 +\cdots+a_n =260\) 이 때, \(n\) 의 값을 구하시오. 정답 13
모래시계 \(A,\;B,\;C\) 에 들어 있는 모래의 양은 각각 \(3^a \;, 9^b ,\; 27^c\) 이고 매 초당 모래가 위에서 아래로 일정하게 떨어지는 양은 각각 \(a, \; b,\; c\) 이다. \(a, \; b,\; c\) 는 이 순서대로 등비수열을 이루고, \(3^a ,\; 9^b ,\; 27^c\) 도 이 순서대로 등비수열을 이루며, 두 수열의 공비는 같다. 모래시계 \(A,\;B,\;C\) 로 잴 수 있는 시간(초)을 각각 \(t_A , \; t_B ,\; t_C\) 라 할 때, \(t_A +t_B +t_C\) 의 값을 구하시오. (단, 모래가 다 떨어진 후 뒤집지 않는다.) 정답 27
그림과 같이 두 직선 \(l,\; m\) 에 동시에 접하는 원 \({\rm C}_1\) 이 있다. 원 \({\rm C}_1\) 의 중심을 지나고 직선 \(l,\;m\) 에 동시에 접하면서 \({\rm C}_1\) 보다 큰 원을 \({\rm C}_2\) 라 하자. 원 \({\rm C}_2\) 의 중심을 지나고 직선 \(l,\;m\) 에 동시에 접하면서 \({\rm C}_2\) 보다 큰 원을 \({\rm C}_3\) 라 하자. 이와 같은 방법으로 원 \({\rm C}_k\) 의 중심을 지나고 직선 \(l,\;m\) 에 동시에 접하는 \({\rm C}_k\) 보다 큰 원을 \({\rm C}_{k+1}\) 이라 하자. (\(k=1,\;2,\;3,\; \cdots\)) 원 \({\rm C}_1\) 의 넓이가 \(..
서로 다른 두 실수 \(a, \; b\) 에 대하여 \(2,\;\; {\dfrac{a^2}{2}}, \;\; b\) 가 이 순서대로 등차수열을 이루고 \(a+2, \;\; b,\;\;1\) 이 이 순서대로 등비수열을 이룰 때, \(a^2 +b^2\) 의 값은? ① \(3\) ② \(4\) ③ \(5\) ④ \(6\) ⑤ \(7\) 정답 ①
첫째항이 \(400\), 공차가 \(-5\) 인 등차수열 \(\{a_n\}\) 에 대하여 \[\frac{1}{\sqrt{a_1}+\sqrt{a_3}} + \frac{1}{\sqrt{a_3}+\sqrt{a_5}} + \cdots +\frac {1}{\sqrt{a_{59}}+\sqrt{a_{61}}}\] 의 값은? ① \(1\) ② \(2\) ③ \(3\) ④ \(4\) ⑤ \(5\) 정답 ①
행렬 \(A\) 가 \(A^3 =E\) 을 만족할 때, 의 설명 중 옳은 것을 모두 고르면? (단, \(E\) 는 단위행렬, \(O\) 는 영행렬이다.) ㄱ. 행렬 \(A\) 의 역행렬이 존재한다. ㄴ. \(A^2 +A+E=O\) ㄷ. 임의의 자연수 \(n\) 에 대하여 \(A^n\) 의 역행렬이 존재한다. ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄱ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ④
역행렬을 갖는 두 이차정사각행렬 \(A,\;B\) 에 대하여 \(AB^{-1} = \left ( \matrix {1 & 1 \\ 0 & -1} \right ) \) 이 성립할 때, 에서 항상 옳은 것을 모두 고른 것은? ㄱ. \(AB^{-1} = BA^{-1}\) ㄴ. \(A^{-1} B=B^{-1} A\) ㄷ. \(A^{-1} B = BA^{-1}\) ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ③
두 이차정사각행렬 \(A,\;B\) 에 대하여 에서 옳은 것을 모두 고른 것은? (단, \(O\) 는 영행렬이고, \(E\) 는 단위행렬이다.) ㄱ. \(A+B=AB\) 이면 \((A-E)^{-1} = B-E\) 이다. ㄴ. \(AB+BA=E,\;\; A^2 =B^2 = O \) 이면 \((AB)^2 = AB\) 이다. ㄷ. \(A^2 = E\) 이면 \((E-A)^4 = 2^3 (E-A) \) 이다. ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤
이차정사각행렬 \(A\) 가 다음 두 조건을 만족한다. (가) \(A^2 -A+E=O\) (나) \(A \left ( \matrix {1 \\ 2} \right ) = \left ( \matrix { 2 \\ -1} \right )\) 이때, 행렬 \(100A\) 의 모든 성분의 합을 구하시오. (단, \(E\) 는 단위행렬이다.) 정답 20