일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 이차곡선
- 행렬과 그래프
- 적분
- 접선의 방정식
- 로그함수의 그래프
- 함수의 그래프와 미분
- 미적분과 통계기본
- 수열
- 도형과 무한등비급수
- 수열의 극한
- 수학질문답변
- 행렬
- 여러 가지 수열
- 수만휘 교과서
- 수능저격
- 확률
- 심화미적
- 함수의 연속
- 중복조합
- 함수의 극한
- 이정근
- 경우의 수
- 적분과 통계
- 기하와 벡터
- 정적분
- 미분
- 수학질문
- 수학1
- 수악중독
- 수학2
- Today
- Total
목록수학1 (908)
수악중독
점 \({\rm P}(x,\;y)\) 가 부등식 \(0 \leq x \leq 1,\;0 \leq y \leq 1\) 이 나타내는 영역에 포함되고, 양수 \(a\) 에 대하여 행렬 \( \left ( \matrix {a & 2 \cr x & y} \right )\) 의 역행렬이 존재하지 않을 때, 점 \({\rm P}(x,\;y)\) 가 나타내는 도형의 길이를 \(f(a)\)라 하자. \(f(a)\) 의 최댓값이 \(M\) 일 때, \(M^2 \) 의 값을 구하시오. 정답 2
두 수열 $\{a_n\}, \; \{b_n\}$ 과 행렬 $A= \begin{pmatrix}1 & 2 \\ 0 & 3 \end{pmatrix}$ 이 다음 두 조건을 만족할 때, 이차정사각행렬 \( {X} \) 를 구하면? (가) \(A^n = a_n A + b_n E\;\;(n \geq 1 ) \) (나) $\begin{pmatrix} a_{n+1} \\ b_{n+1} \end{pmatrix} = X \begin{pmatrix} a_n \\ b_n \end{pmatrix}$ ① $\begin{pmatrix}4 & 3 \\ 2 & 1 \end{pmatrix}$ ② $\begin{pmatrix}4 & 1 \\ 3 & 0 \end{pmatrix}$ ③ $\begin{pmatrix} 4 & 1 \\ -3 & 0..
역행렬이 존재하는 두 이차정사각행렬 \(A,\;B\) 가 \(A^{-1} +B^{-1} =E\) 를 만족할 때, 다음 중 옳은 것을 모두 고른 것은? ㄱ. \(\left ( A+B \right ) \left ( A-B\right ) =A^2 - B^2\) ㄴ. \(\left (A-E \right )^{-1} = B-E\) ㄷ. \( \left ( A+B \right )^{-1} = A^{-1} B^{-1} \) ① ㄱ ② ㄴ ③ ㄱ, ㄷ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤ 행렬의 곱셈에서 교환법칙이 성립하는 5가지 경우 ① 둘 중 하나 이상이 O 행렬인 경우 ex) AO=OA=O ② 둘 중 하나 이상이 단위 행렬인 경우 ex) AE=EA=A ③ 둘의 관계가 역행렬 관계인 경우 더 나아가 둘의 곱이 단..
행렬 $X=\begin{pmatrix} x & 4 \\ -1 & y \end{pmatrix}$ 가 등식 \( \left ( X^2 -4E \right ) \left (X+3E\right ) = O \) 를 만족하고, \(X=2E\) 의 역행렬이 존재할 때, \(\dfrac{y^2}{x} + \dfrac{x^2}{y}\) 의 값은? (단, \(E\) 는 단위행렬, \(O\) 는 영행렬이다.) ① \( - \dfrac{7}{2} \) ② \( - \dfrac{31}{10} \) ③ \( 0 \) ④ \( \dfrac{31}{10} \) ⑤ \( \dfrac{7}{2} \) 더보기 정답 ④
두 행렬 \( A= \left ( \matrix { 1 & 3 \cr -1 & -2 } \right ),\;\;B=\left ( \matrix { 2 & 3 \cr -1 & -1} \right ) \) 에 대하여 \[ A^{100} +A^{99}B + A^{98} B^2 + \cdots + AB^{99}+B^{100} = \left ( \matrix {a & b \cr c & d} \right ) \]이다. 이때, \(a+b+c+d\) 의 값을 구하시오. 정답 2
행렬 \( P=\left ( \matrix {0 & 1 \cr 1 & 0}\right )\) 에 대하여 집합 \(S\) 가 \[ S= \left \{ A\; \vert A 는\; 이차정사각행렬이고,\; PAP=A \right \} \] 일 때, 옳은 것만을 에서 있는 대로 고른 것은? (단, \(O\) 는 영행렬이다.) ㄱ. \(P \in S\) ㄴ. \(A \in S\) 이고 \(B \in S\) 이면 \(AB \in S\) 이다. ㄷ. \(A \in S\) 이고 \( A^2 = O \) 이면 \( A=O\) 이다. ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄱ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤
기울기가 \(0\)이 아닌 두 직선 \(y=ax+b,\;y=cx+d\) 에 대하여 행렬 \(A=\left ( \matrix { a & b \cr c& d} \right ) \) 라고 정의할 때, 에서 항상 옳은 것만을 있는 대로 고른 것은? ㄱ. 두 직선이 만나지 않으면 행렬 \(A\) 의 역행렬이 존재한다. ㄴ. 두 직선이 일치하면 행렬 \(A\) 의 역행렬이 존재하지 않는다. ㄷ. 두 직선이 \(x\) 축 위에서 만나면 행렬 \(A\) 의 역행렬이 존재하지 않는다. ① ㄱ ② ㄷ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤
두 이차정사각행렬 \(A = \left ( \matrix { a & b \cr c& d} \right ), \;\; B=\left ( \matrix { a & c \cr b & d} \right ) \) 에 대하여 \(BA=A\) 가 성립할 때, 에서 옳은 것을 모두 고른 것은? (단, \(E\) 는 단위행렬) ㄱ. \(AB=B\) ㄴ. \(A^2 =A\) ㄷ. \(\left ( A+E \right ) ^{100} =2^{99} A + E\) ① ㄱ ② ㄱ, ㄴ ③ ㄱ, ㄷ ④ ㄴ, ㄷ ⑤ ㄱ. ㄴ, ㄷ 정답 ② 문제 풀이에서 점화식의 일반항이 이해가 안가시는 분들은 아래 쪽에 링크되어 있는 점화식 정리를 클릭하세요 [수능 수학/수능수학] - 점화식 정리
이차정사각행렬 \(A= \left ( \matrix { 1 & 2 \cr a & b } \right ) \) 에 대하여 \(A^5 = O\) 가 되도록 두 상수 \(a,\;b\) 에 대하여 \(a^2 + b^2\) 의 값은? (단, \(O\) 는 영행렬) ① \(\dfrac{1}{2}\) ② \(\dfrac{3}{4}\) ③ \(1\) ④ \(\dfrac{5}{4}\) ⑤ \(\dfrac{3}{2}\) 정답 ④ Aⁿ=O 이면 A²=O 임을 보이자.
역행렬을 갖지 않는 이차정사각행렬 \(A\) 가 등식 \[ A \left ( \matrix {1 \cr 2 } \right ) = \left ( \matrix { 4 \cr 1 } \right ), \;\; A \left ( \matrix {3 \cr 2} \right ) = \left ( \matrix { 1 \cr 5b } \right )\] 가 성립하도록 두 양수 \(a,\;b\) 의 값을 정할 때, \(a+{\Large \frac{5}{b}}\) 의 최솟값을 구하시오. 정답 20