일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 함수의 극한
- 기하와 벡터
- 미분
- 적분
- 수학질문답변
- 확률
- 여러 가지 수열
- 수만휘 교과서
- 정적분
- 적분과 통계
- 심화미적
- 행렬
- 이정근
- 행렬과 그래프
- 수학2
- 수열의 극한
- 도형과 무한등비급수
- 미적분과 통계기본
- 로그함수의 그래프
- 수악중독
- 함수의 그래프와 미분
- 수열
- 중복조합
- 함수의 연속
- 수학질문
- 접선의 방정식
- 수능저격
- 이차곡선
- 수학1
- 경우의 수
- Today
- Total
목록수학1 (908)
수악중독
연속확률변수 \(X\) 가 갖는 값은 구간 \([0,\;1]\) 의 모든 실수이다. 구간 \([0,\;1]\) 에서 두 함수 \(F(x),\;\;G(x)\) 를 \[F(x)={\rm P}(X \ge x),\;\;\; G(x) = {\rm P}(X \le x)\] 로 정의할 때, 에서 항상 옳은 것만을 있는 대로 고른 것은? ㄱ. \(F(0.3) \le F(0.2) \) ㄴ. \(F(0.4) = G(0.6)\) ㄷ. \(F(0.2) - F(0.7) = G(0.7) - G(0.2)\) ① ㄱ ② ㄴ ③ ㄱ, ㄴ ④ ㄱ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ④
그림과 같이 중심이 \(\rm O\) 이고 반지름의 길이가 \(r\) 인 반원 위의 점 \({\rm P}_i\) 에 대하여 직선 \({\rm OP}_i\) 와 반지름의 길이가 \(2r\) 인 반원과의 교점을 각각 \({\rm Q}_i\) 라 한다. (단, \(i=1,\;2,\;3,\;4,\;5\) ) 점 \({\rm P}_1 , \; {\rm P}_2 , \; {\rm P}_3 , \; {\rm P}_4 , \; {\rm P}_5 \) 의 좌표의 평균이 \(10\), 표준편차가 \(\Large \frac{5}{2}\) 일 때, 점 \({\rm Q}_1 , \; {\rm Q}_2 , \; {\rm Q}_3 , \; {\rm Q}_4 , \; {\rm Q}_5 \) 의 \(x\) 좌표의 평균과 표준편차의 곱..
정규분포 \({\rm N}(m,\; \sigma ^2 )\) 을 따르는 확률변수 \(X\) 에 대하여 확률밀도함수 \(f(x)\) 가 모든 실수 \(x\) 에 대하여 \(f(100-x)=f(100+x)\) 를 만족한다. \({\rm P}(m \le X \le m+8)=0.4772\) 일 때, 표준정규분포표를 이용하여 \({\rm P} (94 \le X \le 110)\) 을 구하면? ① \(0.9104\) ② \(0.9270\) ③ \(0.9701\) ④ \(0.9725\) ⑤ \(0.9759\) 정답 ②
갑과 을은 바둑돌을 \(3\) 개, \(2\) 개씩 가지고 시합을 하여 진 사람이 이긴 사람에게 바둑돌 한 개를 주는 게임을 한다. 어느 한 사람의 바둑돌이 전부 없어질 때까지 게임을 할 때, 갑이 이길 확률은? (단, 한 번의 시합에서 비기는 경우는 없고, 갑, 을이 이길 확률은 각각 \(\large \frac{1}{2}\) 이다. ) ① \(\large \frac{2}{3}\) ② \(\large \frac{3}{4}\) ③ \(\large \frac{3}{5}\) ④ \(\large \frac{4}{5}\) ⑤ \(\large \frac{4}{7}\) 정답 ③
세 수열 \(\{a_n\},\;\;\{b_n\},\;\;\{c_n\}\) 의 일반항이 와 같을 때, 수열 중에서 수렴하는 것을 모두 고른 것은? ㄱ. \(a_n = {\dfrac {\sqrt {2n+2+\sqrt{n^2 +2n}}}{\sqrt{2n+1+\sqrt{n^2 +n}}}}\) ㄴ. \(b_n = {\dfrac {\sqrt {2n+2-\sqrt{n^2 +2n}}}{\sqrt{2n+1-\sqrt{n^2 +n}}}}\) ㄷ. \(c_n = {\dfrac {\sqrt {2n+2-2\sqrt{n^2 +2n}}}{\sqrt{2n+1-2\sqrt{n^2 +n}}}}\) ① ㄱ ② ㄱ, ㄴ ③ ㄱ, ㄷ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ⑤
양수 \(a\) 와 자연수 \(n\) 에 대하여 함수 \(S(n)\) 과 \(T(n)\) 을 다음과 같이 정의한다. (가) 수직선에서 \(0
\(x \ne 0\) 일 떄, 무한등비급수 \[ x+ x\left ( x^2 -x+1 \right ) + x \left ( x^2 -x+1 \right )^2 + \cdots \] 의 합을 \(S(x)\) 라 한다. 에서 옳은 것을 모두 고른 것은? ㄱ. \(S(x)\) 의 정의역은 \(\{ x\; \vert \; 0
오른쪽 그림과 같이 \(\overline {\rm AB_1} = \overline {\rm AC_1} =3,\;\; \overline {\rm B_1 C_1}=2\) 인 이등변삼각형의 세 변에 접하는 원 \(\rm O_1\) 을 그린 후, 원 \(\rm O_1\) 에 접하고 삼각형의 두 변 \(\overline {\rm AB_1} \) 과 \(\overline {\rm AC_1}\) 에 접하는 원을 \(\rm O_2\), 원 \(\rm O_2\) 에 접하고 삼각형의 두 변 \(\overline {\rm AB_1} \) 과 \(\overline {\rm AC_1}\) 에 접하는 원을 \(\rm O_3 , \cdots \) 와 같이 원을 한없이 그려 나간다. 이 때, 원 \(\rm O_1 , \; O_2 ,..
\(\sum \limits _{n=1}^{\infty} \left ( {\dfrac{2}{n}} - {\dfrac{3}{n+1}} + {\dfrac {1}{n+3}} \right ) \) 의 값은? ① \(\dfrac{5}{6}\) ② \(1\) ③ \(\dfrac{7}{6}\) ④ \(\dfrac{4}{3}\) ⑤ \(\dfrac{3}{2}\) 정답 ③
수열 \(\{a_n\}\) 이 다음과 같이 정의되어 있다. (단, \(a \ne 0\) ) (가) \(a_1 = a\) (나) \({\dfrac{1}{a_{n+1}}} = {\dfrac {2}{a_n}} +3 \;\;(n=1,\; 2,\; 3,\; \cdots) \) \(a_n\) 이 \(0\) 이 아닌 값으로 수렴할 때, 상수 \(a\) 의 값은? ① \(-\dfrac{2}{3}\) ② \(-\dfrac{1}{3}\) ③ \(\dfrac{1}{3}\) ④ \(\dfrac{2}{3}\) ⑤ \(1\) 정답 ② 점화식 풀이법을 잘 모르겠다면 아래 링크를 클릭 [수능 수학/수능수학] - 점화식 정리