일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | ||||||
2 | 3 | 4 | 5 | 6 | 7 | 8 |
9 | 10 | 11 | 12 | 13 | 14 | 15 |
16 | 17 | 18 | 19 | 20 | 21 | 22 |
23 | 24 | 25 | 26 | 27 | 28 |
- 기하와 벡터
- 적분
- 수열의 극한
- 미분
- 수학2
- 수학1
- 행렬과 그래프
- 중복조합
- 이정근
- 함수의 연속
- 수악중독
- 경우의 수
- 적분과 통계
- 이차곡선
- 로그함수의 그래프
- 심화미적
- 확률
- 미적분과 통계기본
- 행렬
- 정적분
- 여러 가지 수열
- 수능저격
- 접선의 방정식
- 수열
- 수학질문답변
- 함수의 극한
- 수학질문
- 수만휘 교과서
- 함수의 그래프와 미분
- 도형과 무한등비급수
- Today
- Total
목록(9차) 기하와 벡터 문제 풀이 (323)
수악중독
쌍곡선 \({\dfrac{x^2}{4}}-{\dfrac{y^2}{5}}=1\) 의 두 초점을 \(\rm F,\;F'\) 이라 하자. 쌍곡선 위의 한 점 \(\rm P\) 에 대하여 \(\angle {\rm F'PF}\) 의 이등분선이 \(x\) 축과 점 \({\rm A}(1,\;0)\) 에서 만날 때, 삼각형 \(\rm PF'F\) 의 둘레의 길이를 구하시오. 정답 18
반지름의 길이가 각각 \(2,\; 4,\; 8\)이고 서로 외접하는 세 개의 구가 평면 \(\alpha\) 위에 놓여 있다. 세 구의 중심을 각각 \(\rm A,\;B,\;C\)라 하고, 평면 \(\rm ABC\)와 평면 \(\alpha\)가 이루는 예각의 크기를 \(\theta\)라 하자. \(\cos \theta ={\Large \frac{b}{a}} \sqrt{2}\) 일 때, \(a+b\)의 값을 구하시오. (단, \(a,\;b)\)는 서로소인 자연수이다.) 정답 3
좌표공간에서 중심이 점 \(\rm A\)인 구 \((x-2)^2 +(y-1)^2 +(z+1)^2 =\) \(\dfrac{9}{4}\)와 중심이 점 \(\rm B\)인 구 \((x-3)^2 +(y-3)^2 +(z-1)^2 =\) \(\dfrac{27}{4}\)가 만나서 생기는 원을 \(S\)라 하자. 원 \(S\) 위의 두 점 \(\rm P,~Q\)에 대하여 \(\overrightarrow {{\rm{AP}}} \cdot \overrightarrow{{\rm {BQ}}} \)의 최댓값을 \(M\), 최솟값을 \(m\)이라고 할 때, \(M-m=\) \(\dfrac{b}{a}\)이다. \(a+b\)의 값을 구하시오. (단, \(a,~b\)는 서로소인 자연수이다.) 정답 35
평면 위의 임의의 벡터 \(\overrightarrow a = \left( {{a_1},\;{a_2}} \right)\)를 그림과 같이 직선 \(y=\dfrac{1}{3}\)\( x\) 위로 정사영시킨 벡터를 \(\overrightarrow b = \left( {{b_1},\;{b_2}} \right)\)라 한다. 이차정사각행렬 \(A\)에 대하여 \(A\left( {\matrix{{{a_1}} \cr {{a_2}} } } \right) = \left( {\matrix{{{b_1}} \cr {{b_2}} } } \right)\)가 성립할 때, 행렬 \(A\)의 모든 성분의 합은? ① \(\dfrac{6}{5}\) ② \(\dfrac{7}{5}\) ③ \(\dfrac{8}{5}\) ④ \(\dfrac{9}..
오른쪽 그림과 같이 모서리의 길이가 \(2\)인 정육면체 \(\rm ABCD-EFGH\)가 평면 \(\alpha\) 위에 놓여 있다. 이 정육면체의 대각선 \(\rm AG\)에 평행하게 평행광선을 비출 때, 평면 \(\alpha\) 위에 생기는 정육면체의 밑면을 포함한 그림자의 넓이를 구하시오. 정답 12
좌표평면에서 원점 \(\rm O\) 를 중심으로 하고, 두 초점 \(\rm F,\;F'\) 이 \(x\) 축 위에 있는 쌍곡선 위의 임의의 점 \(\rm P\) 에 대하여 \(\overline {\rm PF},\;\overline {\rm PO},\;\overline {\rm PF'}\) 이 이 순서대로 등비수열을 이룬다. 이 때, 이 쌍곡선 위의 점 \((x,\;y)\) 에 대하여 \(\lim \limits_{x \to \infty } \left| {\dfrac{y}{x}} \right|\) 의 값은? ① \(1\) ② \(2\) ③ \(\Large \frac{1}{2} \) ④ \(\sqrt{3}\) ⑤ \(\Large \frac{\sqrt{3}}{3}\) 정답 ① 관련개념 [수능 수학] - 파푸스의..
그림과 같이 좌표공간에 두 구 \({\rm A} \; : \; x^2 +y^2 +z^2 =4\), \({\rm B} \; : \; x^2 +(y-6)^2 +z^2 =1\)이 있다. 두 구 \(\rm A,\;B\) 밖의 점 \(\rm P\)\((x,\; y,\; z)\)에서 두 구 \(\rm A,\;B\)에 그은 접선의 점점까지의 선분들의 집합을 각각 \(S(\rm P\; ; \; A)\), \(S(\rm P \; ; \;B)\)라 하자. 원점 \(\rm O\)에 대하여 \(\overline{\rm OP}=m\)이라 할 때, 도형 \(S(\rm P\; ; \; A)\)와 도형 \(S(\rm P \; ; \;B)\)가 닮음이 되도록 하는 \(m\)의 최댓값을 구하시오. 정답 12
오른쪽 그림과 같이 한 모서리의 길이가 \(2\) 인 정육면체 \(\rm ABCD-EFGH\) 가 있다. 직선 \(\rm AG\) 에 평행한 평행 광선에 의하여 이 광선과 수직인 평면에 정육면체 \(\rm ABCD-EFGH\) 의 그림자가 생겼다. 이 그림자의 넓이를 \(S\) 라 할 때, \(S^2\) 의 값을 구하시오. 정답 48
좌표공간에 두 점 \({\rm A} (3, \; 2, \; 4), \;\; {\rm B} (1, \; 4, \; 8)\)이 있다. 점 \(\rm P\)가 구 \(x^2 +y^2 +z^2 =1\) 위를 움직일 때, \( {\overline {\rm PA}}^2 + {\overline {\rm PB}}^2\)의 최솟값을 구하시오. 정답 84 풀이가 잘못되었습니다. PM의 길이가 6 이므로 이를 제곱하면 36이 되어야 하네요 맨 마지막 줄에서 2(6+36)=84 가 되어 정답이 84가 됩니다. 풀이의 오류를 지적해 주신 최기찬 님께 감사드립니다. 관련개념 [수능 수학] - 파푸스의 중선정리
평평한 책상 위에 반지름의 길이가 \(2\) 인 공이 놓여 있다. 책상 위의 한 점 \(\rm O\) 에서 공의 중심까지의 거리는 \(4\) 이다. 오른쪽 그림과 같이 점 \(\rm O\) 에서 만나고 공에 접하면서 책상에 수직으로 두 책받침을 세울 때, 두 책받침이 이루는 각의 크기를 \(\theta\) 라 하자. 이때, \(\sin \dfrac{\theta}{2}\) 의 값은? ① \(\dfrac{\sqrt{3}}{3}\) ② \(\dfrac{1}{2}\) ③ \(\dfrac{\sqrt{2}}{2}\) ④ \(\dfrac{\sqrt{3}}{2}\) ⑤ \(\dfrac{2\sqrt{2}}{3}\) 정답 ①