일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 접선의 방정식
- 경우의 수
- 행렬
- 미분
- 수학2
- 기하와 벡터
- 수학1
- 수학질문답변
- 로그함수의 그래프
- 적분
- 함수의 그래프와 미분
- 수악중독
- 함수의 극한
- 수만휘 교과서
- 수학질문
- 중복조합
- 수능저격
- 함수의 연속
- 확률
- 심화미적
- 적분과 통계
- 수열
- 정적분
- 수열의 극한
- 미적분과 통계기본
- 이정근
- 행렬과 그래프
- 도형과 무한등비급수
- 이차곡선
- 여러 가지 수열
- Today
- Total
목록(8차) 수학1 질문과 답변 (851)
수악중독
자연수 \(n\) 에 대하여 그림과 같이 세 곡선 \(y=\log _2 x +1\), \(y=\log _2 x\), \(y=\log _2 \left ( x-4^n \right )\) 이 직선 \(y=n\) 과 만나는 세 점을 각각 \({\rm A}_n, \;{\rm B}_n, \; {\rm C}_n\) 이라 하자. 두 삼각형 \(\rm A_{\it n} OB_{\it n} , \; B_{\it n}OC_{\it n}\) 의 넓이를 각각 \(S_n,\; T_n\) 이라 할 때, \(\dfrac{T_n}{S_n} = 64\) 를 만족시키는 \(n\) 의 값을 구하시오. (단, \(\rm O\) 는 원점이다.) 정답 \(5\)
수열 \(\{a_n\}\) 은 다음 조건을 만족시킨다. (가) \(a_1=1, \; a_2=2\)(나) \(a_n\) 은 \(a_{n-2}\) 와 \(a_{n-1}\) 의 합을 \(4\)로 나눈 나머지 \((n \ge 3)\) \(\sum \limits_{k=1}^m a_k =166\) 일 때, \(m\) 의 값을 구하시오. 정답 \(123\)
\(x \ge 1\) 일 때, \(\log x\) 의 지표와 가수를 각각 \(f(x), \; g(x)\) 라 하자. 좌표평면에서 자연수 \(n\) 에 대하여 함수 \(y=\{f(x)+1\}g(x)\) 의 그래프와 직선 \(y=n\) 이 만나는 점의 \(x\) 좌표 중 가장 작은 값을 \(a_n\) 이라 할 때, \(\sum \limits_{n=1}^{10} \left ( \log a_n + \dfrac{1}{n+1} \right ) \) 의 값을 구하시오. 정답 \(65\)
두 이차정사각행렬 \(A, \; B\) 가 \[AB+E=A^2,\;\; AB^3 - BA^3 = 6E\] 를 만족시킬 때, 에서 옳은 것만을 있는 대로 고른 것은? (단, \(E\) 는 단위행렬이다.) ㄱ. \(A\) 의 역행렬이 존재한다.ㄴ. \(AB=BA\)ㄷ.\(A^2 +B^2 = 4E\) ① ㄱ ② ㄷ ③ ㄱ, ㄴ ④ ㄴ, ㄷ ⑤ ㄱ, ㄴ, ㄷ 정답 ③
수열 \(\{a_n\}\) 에 대하여 \(S_n = \sum \limits_{k=1}^{n} a_k\) 라 할 때, \[ 2S_n=3a_n-4n+3\; (n \ge 1)\] 을 만족시킨다. 다음은 일반항 \(a_n\) 을 구하는 과정이다. \(2S_n=3a_n-4n+3\; \cdots\cdots\; ㉠\)에서 \(n=1\) 일 때, \(2S_1=3a_1-1\) 이므로 \(a_1=1\) 이다.\(2S_{n+1}=3a_{n+1}-4(n+1)+3 \; \cdots\cdots \;㉡\)㉡에서 ㉠을 뺀 식으로부터 \(a_{n+1}=3a_n+ \) (가) 이다. 수열 \(\{a_n+2\}\) 가 등비수열이므로일반항 \(a_n\) 을 구하면\(a_n=\) (나) \((n\ge 1)\)이다. 위의 (가)에 알맞은 수를..
그림과 같이 중심각의 크기가 \(\dfrac{\pi}{3}\) 이고 반지름의 길이가 \(6\) 인 부채꼴 \(\rm OAB\) 가 있다. 부채꼴 \(\rm OAB\) 에 내접하는 원 \(O_1\) 이 두 선분 \(\rm OA, \; OB\), 호 \(\rm AB\) 와 만나는 점을 각각 \(\rm A_1, \; B_1, \; C_1\) 이라 하고, 부채꼴 \(\rm OA_1B_1\) 의 외부와 삼각형 \(\rm A_1C_1B_1\) 의 내부의 공통부분의 넓이를 \(S_1\) 이라 하자.부채꼴 \(\rm OA_1B_1\) 에 내접하는 원 \(O_2\) 가 두 선분 \(\rm OA_1, \; OB_1\), 호 \(\rm A_1B_1\) 와 만나는 점을 각각 \(\rm A_2, \; B_2, \; C_2\) ..
수열 \(\{a_n\}\) 이 \(a_1=3\) 이고 \[{a_{n + 1}} = \left\{ {\begin{array}{ll}{\dfrac{{{a_n}}}{2}}&{({a_n} 은 \; 짝수\;)}\\{\dfrac{{{a_n} + 93}}{2}}&{\left( {{a_n}은 \; 홀수\;} \right)} \end{array}} \right.\] 가 성립한다. \(a_k =3\) 을 만족시키는 \(50\) 이하의 모든 자연수 \(k\) 의 값의 합을 구하시오. 정답 \(235\)
양수 \(x\) 에 대하여 \(\log x\) 의 지표와 가수를 각각 \(f(x), \; g(x)\) 라 하자. \(\{ f(x) \}^2 +3g(x)=3\) 의 값이 \(3\) 이 되도록 하는 모든 \(x\) 값의 곱은 \(10^{\frac{q}{p}}\) 이다. \(10(p+q)\) 의 값을 구하시오. (단, \(p, \;q\) 는 서로소인 자연수이다.) 정답 \(70\)
수열 \(\{a_n\}\) 은 \(15\) 와 서로소인 자연수를 작은 수부터 차례대로 모두 나열하여 만든 것이다. 예를 들면 \(a_2 =2 , \;a_4=7\) 이다. \(\sum \limits_{n=1}^{16} a_n\) 의 값은? ① \(240\) ② \(280\) ③ \(320\) ④ \(360\) ⑤ \(400\) 정답 ②