일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
- 기하와 벡터
- 수능저격
- 심화미적
- 수악중독
- 이차곡선
- 로그함수의 그래프
- 도형과 무한등비급수
- 행렬
- 정적분
- 수만휘 교과서
- 함수의 극한
- 확률
- 이정근
- 수학1
- 경우의 수
- 수열
- 수학질문답변
- 미분
- 수학질문
- 중복조합
- 행렬과 그래프
- 수학2
- 함수의 연속
- 적분과 통계
- 여러 가지 수열
- 적분
- 접선의 방정식
- 수열의 극한
- 미적분과 통계기본
- 함수의 그래프와 미분
- Today
- Total
목록(고1) 수학 - 문제풀이 (696)
수악중독
두 상수 $a, \; b$ 에 대하여 함수 $f(x)=\sqrt{-x+a}-b$ 라 하자. 함수 $$g(x)=\begin{cases} |f(x)|+b & (x \le a) \\ -f(-x+2a)+|b| & (x>a) \end{cases}$$ 와 두 실수 $\alpha, \; \beta \; (\alpha < \beta)$ 는 다음 조건을 만족시킨다. (가) 실수 $t$ 에 대하여 함수 $y=g(x)$ 의 그래프와 직선 $y=t$ 의 교점의 개수를 $h(t)$ 라 하면 $h(\alpha) \times h(\beta)=4$ 이다. (나) 방정식 $\{g(x)-\alpha\}\{g(x)-\beta\}=0$ 을 만족시키는 실수 $x$ 의 최솟값은 $-30$, 최댓값은 $15$ 이다. $\{g(150)\}^2$ ..
연립부등식 $$\begin{cases} 3x \ge 2x+3 & \\ x-10 \le -x & \end{cases}$$ 를 만족시키는 모든 정수 $x$ 의 값의 합은? ① $10$ ② $12$ ③ $14$ ④ $16$ ⑤ $18$ 더보기 정답 ② $3\le x \le 5$ 이므로 $3+4+5=12$
좌표평면에서 원 $(x-a)^2+(y+4)^2=16$ 을 $x$ 축의 방향으로 $2$ 만큼, $y$ 축의 방향으로 $5$ 만큼 평행이동한 도형이 원 $(x-8)^2+(y-b)^2=16$ 일 때, $a+b$ 의 값은? (단, $a, \; b$ 는 상수이다.) ① $5$ ② $6$ ③ $7$ ④ $8$ ⑤ $9$ 더보기 정답 ③ $a+2=8, \quad \therefore a=6$ $-4+5=b, \quad \therefore b=1$ $\therefore a+b=7$
실수 전체의 집합에서 정의된 두 함수 $f(x)=2x+1, \; g(x)$ 가 있다. 모든 실수 $x$ 에 대하여 $(g \circ g)(x)=3x-1$ 일 때, $((f \circ g) \circ g)(a)=a$ 를 만족시키는 실수 $a$ 의 값은? ① $\dfrac{1}{5}$ ② $\dfrac{3}{5}$ ③ $1$ ④ $\dfrac{7}{5}$ ⑤ $\dfrac{9}{5}$ 더보기 정답 ① $f(3a-1)=6a-1=a$ $\therefore a=\dfrac{1}{5}$
좌표평면 위의 세 점 $\mathrm{A}(5, \; 1)$, $\mathrm{B}(-1, \; 4)$, $\mathrm{C}(a, \; b)$ 에 대하여 선분 $\mathrm{AB}$ 를 $2:1$ 로 내분하는 점의 좌표와 선분 $\mathrm{AC}$ 를 $2:1$ 로 외분하는 점의 좌표가 서로 같을 때, $a+b$ 의 값은? ① $3$ ② $4$ ③ $5$ ④ $6$ ⑤ $7$ 더보기 정답 ③
실수부분이 $1$ 인 복소수 $z$ 에 대하여 $\dfrac{z}{2+i}+\dfrac{\overline{z}}{2-i}=2$ 일 때, $z\overline{z}$ 의 값은? (단, $i=\sqrt{-1}$ 이고, $\overline{z}$ 는 $z$ 의 켤레복소수이다.) ① $2$ ② $4$ ③ $6$ ④ $8$ ⑤ $10$ 더보기 정답 ⑤
좌표평면 위에 두 점 $\mathrm{A}(2, \; 4)$, $\mathrm{B}(5, \; 1)$ 이 있다. 직선 $y=-x$ 위의 점 $\mathrm{P}$ 에 대하여 $\overline{\mathrm{AP}}=\overline{\mathrm{BP}}$ 일 때, 선분 $\mathrm{OP}$ 의 길이는? (단, $\mathrm{O}$ 는 원점이다.) ① $\dfrac{\sqrt{2}}{4}$ ② $\dfrac{\sqrt{2}}{2}$ ③ $\sqrt{2}$ ④ $2\sqrt{2}$ ⑤ $4\sqrt{2}$ 더보기 정답 ②
다항식 $\left (x^2+4 \right )^2 - 3x \left (x^2+4 \right ) -4x^2$ 이 $(x+a)^2 \left (x^2+bx+c \right )$ 로 인수분해될 때, 세 정수 $a, \; b, \; c$ 에 대하여 $a+b+c$ 의 값은? ① $3$ ② $5$ ③ $7$ ④ $9$ ⑤ $11$ 더보기 정답 ①
$x$ 에 대한 연립부등식 $$\begin{cases} |x-5| 0 & \end{cases}$$ 이 해를 갖지 않도록 하는 자연수 $a$ 의 개수는? ① $3$ ② $4$ ③ $5$ ④ $6$ ⑤ $7$ 더보기 정답 ①
좌표평면 위의 두 점 $\mathrm{A}(1, \; 0)$, $\mathrm{B}(6, \; 5)$ 와 직선 $y=x$ 위의 점 $\mathrm{P}$ 에 대하여 $\overline{\mathrm{AP}}+\overline{\mathrm{BP}}$ 의 값이 최소가 되도록 하는 점 $\mathrm{P}$ 를 $\mathrm{P}_0$ 이라 하자. 직선 $\mathrm{AP}_0$ 을 직선 $y=x$ 에 대하여 대칭이동한 직선이 점 $(9, \; a)$ 를 지날 때, $a$ 의 값은? ① $4$ ② $5$ ③ $6$ ④ $7$ ⑤ $8$ 더보기 정답 ④